scholarly journals Design, modelling and optimisation of a small-scale Solar Organic Rankine Cycle system for rural power generation

2021 ◽  
Vol 897 (1) ◽  
pp. 012003
Author(s):  
L F Patiño ◽  
U Azimov ◽  
C P Tavera-Ruiz ◽  
J M Castellanos ◽  
P Gauthier-Maradei ◽  
...  

Abstract This research study develops the design and model of a Solar Organic Rankine Cycle (SORC) coupled to a bio-digester for small-scale generation in rural areas, in Betulia, Colombia. Moreover, the model is optimised employing a Genetic Algorithm with the software Matlab and the thermodynamic library CoolProp. The objective variables were the mass flow rate of the working fluid, the pressure and temperature of the expander inlet, the solar collectors’ type and the temperature of the water circuit for the bio-digester. The results indicate an overall efficiency between 8.42 and 9.45% with a Levelized Cost of Energy (LCE) between 3.85 and 5.63 £/W. Additionally, the power output is directly related to the mass flow rate of the working fluid. Likewise, increasing the scale of the SORC decreases the LCE. Finally, the results suggest that a superheated fluid reduces the efficiency and the LCE and can deliver more heat to the bio-digester. It is advisable the utilisation of a scroll expander and a counter-flow plate exchanger with a Direct Vapour Generation configuration. The model is a flexible tool capable of integrating more equations and components, with the evaluation of different fitness functions.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1105 ◽  
Author(s):  
Carlo Carcasci ◽  
Lapo Cheli ◽  
Pietro Lubello ◽  
Lorenzo Winchler

This paper presents an off-design analysis of a gas turbine Organic Rankine Cycle (ORC) combined cycle. Combustion turbine performances are significantly affected by fluctuations in ambient conditions, leading to relevant variations in the exhaust gases’ mass flow rate and temperature. The effects of the variation of ambient air temperature have been considered in the simulation of the topper cycle and of the condenser in the bottomer one. Analyses have been performed for different working fluids (toluene, benzene and cyclopentane) and control systems have been introduced on critical parameters, such as oil temperature and air mass flow rate at the condenser fan. Results have highlighted similar power outputs for cycles based on benzene and toluene, while differences as high as 34% have been found for cyclopentane. The power output trend with ambient temperature has been found to be influenced by slope discontinuities in gas turbine exhaust mass flow rate and temperature and by the upper limit imposed on the air mass flow rate at the condenser as well, suggesting the importance of a correct sizing of the component in the design phase. Overall, benzene-based cycle power output has been found to vary between 4518 kW and 3346 kW in the ambient air temperature range considered.


2021 ◽  
Vol 312 ◽  
pp. 11015
Author(s):  
Pietro Ungar ◽  
Zekeriya Özcan ◽  
Giampaolo Manfrida ◽  
Özgür Ekici ◽  
Lorenzo Talluri

In this study, turbine modelling of a geothermal sourced organic Rankine cycle (ORC) power plant is aimed. Thermodynamic model of the plant is constructed with the help of design and off-design plant data from an existing two-cycle power plant in southwestern Anatolia. Utilizing statistical analysis tools such as maximum likelihood estimation and probability distribution, plant variables are obtained within their standard deviations. Stodola curves and probability calculations demonstrate that both turbines are most likely to have two stages. Average losses are 2.3 MW and 1.2 MW from Turbine-I and Turbine-II respectively throughout the different seasons. After the determination of losses, overall turbine efficiencies demonstrate a reverse trend with increasing reduced mass flow rate. This may be associated with the increased choking of the turbine. Correlations estimate rather fixed efficiency values at off-design conditions (84% for Turbine-I and 77% for Turbine-II); that is an expected outcome since these correlations are influenced mainly by the design isentropic efficiency, which is a constant value. On the other hand, these correlations are most likely to be proposed for non-choking conditions which are invalid for off-design conditions of existing ORC turbines. Datapoint dispersion in Turbine-II does not demonstrate a strong correlation with physical constraints such as -pressure ratio and reduced mass flow rate- as it does for Turbine-I; this phenomenon may need further attention for future work.


Author(s):  
Ying Zhang ◽  
Arun Kumar Narasimhan ◽  
Mengjie Bai ◽  
Li Zhao ◽  
Shuai Deng ◽  
...  

Abstract Solar driven ORC system is a possible solution for small-scale power generation. A scroll expander is considered due to its better suitability among other positive displacement expanders for small-scale power outputs. This work conducted a test of an ORC system with an expansion valve by varying the working fluid mass flow rate in two scenarios. A dynamic system-level model of ORC was developed and validated with experimental data. The validated model was used to predict the ORC performance considering off-design conditions of expander and solar insolation. The experimental data showed that pressures and temperatures exhibited the same trend as that of the working fluid mass flow rate, of which the evaporation pressure was the most sensitive to this variation. The simulation results are in good agreement with the experimental results. Results from the dynamic model showed that the ORC power output was underestimated by up to 54.7%, when off-design performance of expander was not considered. Considering the expander off-design performance and solar insolation, a highest thermal efficiency of 7.6% and an expander isentropic efficiency of 80.6% were achieved.


2015 ◽  
Vol 764-765 ◽  
pp. 186-190
Author(s):  
Ben Ran Fu

A 250-kW organic Rankine cycle system comprised of a preheater, evaporator, condenser, turbine, generator, and pump was used to study its off-design performance and operational control strategy by the flow rate control approach of the working fluid R245fa. The net power output was 243 kW, and the system thermal efficiency was 9.5% under design conditions. The analytical results demonstrated that the flow rate of the working fluid increased with increasing the heat source temperature (TW,in); higher TW,in yielded better heat transfer performance of the designed preheater as well as a higher requirement for the evaporator’s heat capacity; and the net power output increased linearly with increasing TW,in.


Author(s):  
Awaludin Martin ◽  
Muhammad Nur

New and renewable energy sources such as solar, geothermal, and waste heat  are energy sources that can be used as a source of energy for Organic Rankine cycle system because the organic Rankine cycle (ORC) requires heat at low temperatures to be used as energy source. The experimental of Organic Rankine Cycle (ORC) systems with solar energy as a heat source was conduct to investigate a small-scale ORC system with R134a as a working fluid by varying the heat source at temperature 75⁰C-95⁰C. The experiment resulted a maximum efficiency, power of system is 4.30%, and 185.9 Watt, where the temperature of heat source is 95⁰C, the pressure and temperature of steam inlet turbine is 1.38 MPa and 67.9oC respectively. Solar energy as the main energy source in the ORC system can reduce energy use up to 49.9% or 4080.8 kJ where the temperature of the water as the heat source in the evaporator is 51°C.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 113 ◽  
Author(s):  
Mochamad Surindra ◽  
Wahyu Caesarendra ◽  
Totok Prasetyo ◽  
Teuku Mahlia ◽  
Taufik

Binary cycle experiment as one of the Organic Rankine Cycle (ORC) technologies has been known to provide an improved alternate scenario to utilize waste energy with low temperatures. As such, a binary geothermal power plant simulator was developed to demonstrate the geothermal energy potential in Dieng, Indonesia. To better understand the geothermal potential, the laboratory experiment to study the ORC heat source mechanism that can be set to operate at fixed temperatures of 110 °C and 120 °C is conducted. For further performance analysis, R245fa, R123, and mixed ratio working fluids with mass flow rate varied from 0.1 kg/s to 0.2 kg/s were introduced as key parameters in the study. Data from the simulator were measured and analyzed under steady-state condition with a 20 min interval per given mass flow rate. Results indicate that the ORC system has better thermodynamic performance when operating the heat source at 120 °C than those obtained from 110 °C. Moreover, the R123 fluid produces the highest ORC efficiency with values between 9.4% and 13.5%.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah R. Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick G. Verdin

AbstractAlternative (unconventional) deep geothermal designs are needed to provide a secure and efficient geothermal energy supply. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as the working fluid mass flow rate, the casing and cement thermal properties, and the wellbore radii dimensions. The results conclude the highest energy flow rate to be 1.5 MW, after an annulus radii increase and an imposed mass flow rate of 5 kg/s. At 3 kg/s, the DBHE yielded an energy flow rate a factor of 3.5 lower than the NWG 55-29 conventional design. Despite this loss, the sensitivity analysis allows an assessment of the key thermodynamics within the wellbore and provides a valuable insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of subcritical conditions, and could aid the development of unconventional designs within future EGS work like the Newberry Deep Drilling Project (NDDP). Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems to support EGS projects that could extend to deeper depths.


Sign in / Sign up

Export Citation Format

Share Document