scholarly journals Ecological Risk Assessment of Heavy Metals Contamination in Lower Klang River

2021 ◽  
Vol 920 (1) ◽  
pp. 012023
Author(s):  
M A Sefie ◽  
I N Mohamad ◽  
F Baharudin ◽  
J Kassim

Abstract Estuarine and coastal environments are known to be major sinks for heavy metals. This ecosystem and its sustainability should be secured using the ecological as indicators. This study is conducted to quantify the heavy metal concentration and to assess the potential ecological risk levels of heavy metals in the sediments from Klang River Estuary. Three typical heavy metals such as cadmium (Cd), lead (Pb) and zinc (Zn) were identified. The surface sediment samples were collected from three sampling stations. The concentration of heavy metals in the sediments were arrange in a decreasing sequence of Pb > Zn > Cd. A range of pollution indicators based on single pollution indices such as Contamination Factor, Contamination Degree, Pollution Load Index and Geoaccumulation Index were considered for ecological risk analysis. In conclusion, the ecological risk levels of heavy metals in the sediments from Lower Klang River were low and unpolluted. However, an overall assessment regarding to the heavy metals’ concentrations, spatial distribution and their potential sources need to be monitored for a better understanding of the water-sediment interaction.

2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


Author(s):  
Ogunti mehin ◽  
◽  
Apata o ◽  

Ten water and ten sediment samples from both Igbokoda and Apapa in South west, Nigeria were collected between March and August, 2018 for heavy metal analysis. The study aimed at using Potential Ecological Risk (PER) index to characterize rivers sediments and waters for possible environmental impact. The sampling span industrial, domestic and recreational areas. The water and sediment grab samples were treated using standard procedures. The filtrate from sediment was made up to 50 cm3 mark with distilled water and used for seven heavy metals determination using atomic absorption spectrophotometry (AAS). Contamination factor (CF) and Pollution load index (PLI) calculated for each metal in the sediments indicate moderate contaminations. However, Cd in exception showed the highest potential ecological risk factor of 42.3 in Igbokoda. PER value of the Igbokoda sediment is 45.37 while that of Apapa sediment is 6.79. The potential risk pose by Cd alone in the sediment suggests that the Igbokoda water is unsafe for recreational and other beach activities. The recommendation from the study will suggest a proper treatment of wastewater and sewages before fluxing into both the Igbokoda and Apapa water bodies


2018 ◽  
Vol 3 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Mohamed Nageeb Rashed ◽  
Mohamed ELSadeek Fouad Toufeek ◽  
Mahmoud Abedeldaium Eltaher ◽  
Ayman Outhman Elbadry

Electrical conductivity, pH, organic matter, carbonates and five heavy metals (Fe, Mn, Zn, Cu and Pb) were measured seasonally in the sediments of River Nile (Egypt) during 2015. Ten sectors include 30 sites were selected along River Nile from Aswan to Armant to assess the levels of the studied parameters. Heavy metals in sediments were in the order of Pb < Cu < Zn < Mn < Fe, which indicated that Pb was found to be the least concentration in sediments, whereas Fe was the most accumulated element. Pearson’s correlation coefficients among the measured parameters were tested. Zn, Cu and Pb were positively correlated with electrical conductivity and organic matter accumulation and also they were positively correlated with each other. Sediments pollution load was studied through pollution indices [geo-accumulation index, pollution load index, modified degree of contamination, contamination factor and enrichment factor]. The pollution indices confirmed that the River Nile sediments in the studied area were not contaminated with these heavy metals except for some samples collected from certain sites as a result of the anthropogenic activities at these sites.


Author(s):  
Serkan Kürker

In this study, ecological risks arising from the accumulation of some heavy metals in surface sediments of Lake Tortum are discussed based on the use of ecological indices, such as enrichment factor (EF), contamination factor (CF), pollution load index (PLI), potential ecological risk index (PER) and the mean probable effect concentration quotient (mPEC-Q). Sediment samples were collected from six different sites using Van Veen grab and heavy metal and organic carbon content of sediments were determined. Results testify to the existence of minimal to moderate contamination in lake sediment. The highest value for the enrichment factor pertains to Cd caused by the use of fossil fuels in settlement areas in the lake catchment. PLI and PER estimations, on the other hand, reveals the presence of low heavy metals-induced ecological risk in lake sediments. Ranging between 15% and 29%, mPEC-Q values are indicative of the fact that Lake Tortum is a low-moderate priority site in terms of toxicity level caused by heavy metals.


2020 ◽  
Vol 24 (8) ◽  
pp. 1447-1454
Author(s):  
B. Samuel ◽  
S. Solomon ◽  
F. Daniel ◽  
G.M. Zinabu ◽  
G. Riise

Industrial effluents, containing heavy metals, drain directly into downstream water sources within the Hawassa Industrial Zone. These, water  sources are used for irrigation, drinking water and other domestic purposes. The load of pollutants, environmental risks and potential human impacts are generally, unknown for soil in Ethiopia. Therefore, the aim of this study was to determine the extent of heavy metal pollution of soil within the Hawassa Industrial Zone and to evaluate environmental impacts using contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), ecological risk factor (Er), ecological risk index (ERI) and pollution load index (PLI) analyses. Seven heavy metals: Cr, Ni, Cu, Zn, As, Cd and Pb were determined in soil samples from three different sites by inductively coupled plasma mass spectrometry (ICP-MS). Average concentration of metals decreased in the order of Zn>Cu>Cr>Ni>Pb>As>Cd consistent with the normal order of abundance in non-polluted soils. One way ANOVA revealed significant differences (P<0.05) in the concentrations of Cu, As, Cd and Pb among the sampling sites. Pearson’s correlation, principal component and cluster analyses revealed that heavy metals are originating from different sources. Within the industrial area,  the CF increased in the order of Pb<Cd<Zn<As<Cu<Cr<Ni. The result of Cd revealed that there was considerable to very high contamination of the soil. The mCd index showed moderate contamination of the soils. The Er increased in the order of Zn<Cr<Pb<Cu<Ni<As<Cd and the result of the ERI value revealed considerable ecological risk for the soils. Overall, the study showed that the soils within the Hawassa Industrial Zone are highly contaminated with heavy metals. Therefore, regular monitoring of heavy metals concentration in soil and policy interventions with respect to waste disposal are recommended. Keywords: Heavy metals, potential ecological risks, pollution load index, soil


2018 ◽  
Vol 44 ◽  
pp. 00182 ◽  
Author(s):  
Malwina Tytła ◽  
Anna Dmochowska ◽  
Dariusz Dmochowski ◽  
Kinga Jaworska

The aim of the study was to assess the ecological risk of five trace metals, i.e. Cd, Cu, Ni, Pb, Zn, accumulated in bottom sediments of young water reservoir – Bardowskiego Lagoon located in Warsaw, Poland. In this case, several indices were used, i.e. Geoaccumulation index (Igeo), Contamination factor (CF), Potential ecological risk factor (ER), Degree of contamination (DC), Pollution load index (PLI) and Risk index (RI). The average trace metals concentrations in sediments, were as follow: Zn > Pb > Cu > Cd > Ni. The obtained results revealed that bottom sediments were very highly to extremely high contaminated by Cd and the ecological risk related with this pollutant was the largest. They also indicated that water from the study area was characterized by a low ecological quality, especially due to the content of Cd and Pb. The research proves that problem of cadmium contamination in bottom sediments of young water reservoirs is real and poses a serious ecological risk.


Author(s):  
Matheus Mendes Reis ◽  
Leonardo David Tuffi Santos ◽  
Ariovaldo José da Silva ◽  
Gevany Paulino de Pinho ◽  
Leonardo Michel Rocha

 There is great concern with soil and plant contamination by heavy metals due to the use of polluted water in agricultural irrigation. In this study, areas irrigated with Vieira River water were evaluated as to contamination by As, Cr, Cu, Ni, Pb and Zn. The Vieira River receives effluent from Montes Claros city, state of Minas Gerais, Brazil. To do so, two irrigated areas were selected, one upstream and one downstream of the Montes Claros city. Wastewater discharge increased the concentration of As and Ni in the water of Vieira River, and consequently, of As, Cr, Cu, Ni, Pb and Zn in the soil and of As and Zn in forage grasses. However, the content of heavy metals in the soil did not exceed the internationally recommended limits. Pollution load index (PLI) and contamination factor (CF) indicated the existence of pollution and moderate contamination in downstream soils of the city of Montes Claros. Potential ecological risk index (RI) and ecological risk factor (Er) indicated a low ecological risk, but these indicators were higher in downstream soils of Montes Claros. Arsenic (As) was the only heavy metal that featured a transfer factor (TF) higher than the widespread values found in literature and positive geoaccumulation index (Igeo), indicative of anthropogenic pollution.


2018 ◽  
Vol 77 (5) ◽  
pp. 1418-1430 ◽  
Author(s):  
Mir Mohammad Ali ◽  
Mohammad Lokman Ali ◽  
Md. Saiful Islam ◽  
Md. Zillur Rahman

Abstract This study was conducted to assess the levels of toxic metals like arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in water and sediments of the Pasur River in Bangladesh. The ranges of Cr, As, Cd, Pb in water were 25.76–77.39, 2.76–16.73, 0.42–2.98 and 12.69–42.67 μg/L and in sediments were 20.67–83.70, 3.15–19.97, 0.39–3.17 and 7.34–55.32 mg/kg. The level of studied metals in water samples exceeded the safe limits of drinking water, indicating that water from this river is not safe for drinking and cooking. Certain indices, including pollution load index (PLI) and contamination factor (Cif) were used to assess the ecological risk. The PLI indicated progressive deterioration of sediments by the studied metals. Potential ecological risks of metals in sediment indicated low to considerable risk. However, the Cif values of Cd ranged from 0.86 to 8.37 revealed that the examined sediments were strongly impacted by Cd. Considering the severity of potential ecological risk (PER) for single metal (Eir), the descending order of contaminants was Cd &gt; Pb &gt; As &gt; Cr. According the results, some treatment scheme must formulate and implement by the researchers and related management organizations to save the Pasur River from metals contamination.


Author(s):  
A. N. Ogbaran ◽  
H. Uguru

The use of lowlands for refuse collection point (dumpsite) is a very common practice in Nigeria. However, people cultivated the areas within the vicinity of the dumpsites, without knowledge of the risk of these heavy metals. Therefore, this study was done to evaluate the risk of heavy metals pollution of soils within the vicinity of an active dumpsite. Four (4) soil samples (from 4 locations) at a depth of 0–20 cm were collected from the vicinity of the dumpsite. The heavy metals (e.g. iron lead, nickel and cadmium) concentration of the collected soil samples were analyzed according to American Society for Testing and Materials (ASTM) International methods. Pollution indices (contamination factor, enrichment factor, pollution load index and geoaccumulation index) were used to ascertain the level of heavy metals contamination of the dumpsite area. Results obtained from the soil tests revealed that, the dumpsite area had high heavy metals concentrations. The heavy metals concentrations were of this ranged: iron 3420 mg kg-1 to 4323 mg kg-1, lead 28.92 mg kg-1 to 58.84 mg kg-1, nickel 2.89 mg kg-1 to 6.91 mg kg-1, and cadmium from 1.04 mg kg-1 to 2.05 mg kg-1. The heavy metals concentrations ranked as Fe > Pb > Ni > Cd. Pollution indices results showed that cadmium had the highest contamination factor, enrichment factor, pollution load index and geoaccumulation index values, which portrayed that the dumpsite soil was heavily contaminated with cadmium. Results of the correlation showed a strong correlation (r = 0.87) between iron and nickel, indicating that the two heavy metals got their pollution from the source(s). Results obtained from this study will further help the government and environmental regulators to plan and carried out suitable remediation strategies, to clean the environment.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


Sign in / Sign up

Export Citation Format

Share Document