scholarly journals The Potential of Heavy Metals Contamination in the Surface Sediments of River Nile, Egypt

2018 ◽  
Vol 3 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Mohamed Nageeb Rashed ◽  
Mohamed ELSadeek Fouad Toufeek ◽  
Mahmoud Abedeldaium Eltaher ◽  
Ayman Outhman Elbadry

Electrical conductivity, pH, organic matter, carbonates and five heavy metals (Fe, Mn, Zn, Cu and Pb) were measured seasonally in the sediments of River Nile (Egypt) during 2015. Ten sectors include 30 sites were selected along River Nile from Aswan to Armant to assess the levels of the studied parameters. Heavy metals in sediments were in the order of Pb < Cu < Zn < Mn < Fe, which indicated that Pb was found to be the least concentration in sediments, whereas Fe was the most accumulated element. Pearson’s correlation coefficients among the measured parameters were tested. Zn, Cu and Pb were positively correlated with electrical conductivity and organic matter accumulation and also they were positively correlated with each other. Sediments pollution load was studied through pollution indices [geo-accumulation index, pollution load index, modified degree of contamination, contamination factor and enrichment factor]. The pollution indices confirmed that the River Nile sediments in the studied area were not contaminated with these heavy metals except for some samples collected from certain sites as a result of the anthropogenic activities at these sites.

2021 ◽  
Vol 920 (1) ◽  
pp. 012023
Author(s):  
M A Sefie ◽  
I N Mohamad ◽  
F Baharudin ◽  
J Kassim

Abstract Estuarine and coastal environments are known to be major sinks for heavy metals. This ecosystem and its sustainability should be secured using the ecological as indicators. This study is conducted to quantify the heavy metal concentration and to assess the potential ecological risk levels of heavy metals in the sediments from Klang River Estuary. Three typical heavy metals such as cadmium (Cd), lead (Pb) and zinc (Zn) were identified. The surface sediment samples were collected from three sampling stations. The concentration of heavy metals in the sediments were arrange in a decreasing sequence of Pb > Zn > Cd. A range of pollution indicators based on single pollution indices such as Contamination Factor, Contamination Degree, Pollution Load Index and Geoaccumulation Index were considered for ecological risk analysis. In conclusion, the ecological risk levels of heavy metals in the sediments from Lower Klang River were low and unpolluted. However, an overall assessment regarding to the heavy metals’ concentrations, spatial distribution and their potential sources need to be monitored for a better understanding of the water-sediment interaction.


Author(s):  
A. N. Ogbaran ◽  
H. Uguru

The use of lowlands for refuse collection point (dumpsite) is a very common practice in Nigeria. However, people cultivated the areas within the vicinity of the dumpsites, without knowledge of the risk of these heavy metals. Therefore, this study was done to evaluate the risk of heavy metals pollution of soils within the vicinity of an active dumpsite. Four (4) soil samples (from 4 locations) at a depth of 0–20 cm were collected from the vicinity of the dumpsite. The heavy metals (e.g. iron lead, nickel and cadmium) concentration of the collected soil samples were analyzed according to American Society for Testing and Materials (ASTM) International methods. Pollution indices (contamination factor, enrichment factor, pollution load index and geoaccumulation index) were used to ascertain the level of heavy metals contamination of the dumpsite area. Results obtained from the soil tests revealed that, the dumpsite area had high heavy metals concentrations. The heavy metals concentrations were of this ranged: iron 3420 mg kg-1 to 4323 mg kg-1, lead 28.92 mg kg-1 to 58.84 mg kg-1, nickel 2.89 mg kg-1 to 6.91 mg kg-1, and cadmium from 1.04 mg kg-1 to 2.05 mg kg-1. The heavy metals concentrations ranked as Fe > Pb > Ni > Cd. Pollution indices results showed that cadmium had the highest contamination factor, enrichment factor, pollution load index and geoaccumulation index values, which portrayed that the dumpsite soil was heavily contaminated with cadmium. Results of the correlation showed a strong correlation (r = 0.87) between iron and nickel, indicating that the two heavy metals got their pollution from the source(s). Results obtained from this study will further help the government and environmental regulators to plan and carried out suitable remediation strategies, to clean the environment.


Tehnika ◽  
2020 ◽  
Vol 75 (4) ◽  
pp. 297-304
Author(s):  
Todor Serafimovski ◽  
Goran Tasev ◽  
Trajce Stafilov

The intense mineral extraction in mining areas during the last several decades has produced a large amount of waste material and tailings, which release toxic elements to the environment. The aim of the study was to determine in two vertical profiles/sections (1 and 2) the heavy metal contents of samples derived from six samples, three from each section located in the porphyry copper mine Buchim area, Republic North Macedonia. The results have been compared to new Dutchlist (DL) and Kabata-Pendias (KP) standards and the following was concluded: As values ranged 14.985÷60.131 mg kg-1 with 4 samples above the target value of the DL (29 mg kg-1 As) and 6 above standard values given in KP value (5 mg kg-1 As), in that context Co values ranged 11 ÷57 mg kg-1 with 6 values above the target value of the DL (9 mg kg-1 Co) and 5 above standard values given in KP value (12 mg kg-1 Co), Cr with range 29.32÷75.76 mg kg-1 with 6 over KP value (10 mg kg-1 Cr) and none above the target value of the DL (100 mg kg-1 Cr), Cu with range 2694÷6749 mg kg-1 with 6 samples above the target value of the DL (36 mg kg-1 Cu) and 6 above standard values given in KP value (20 mg kg-1 Cu), Ni with range 59.57÷105.98 mg kg-1 with 6 samples above the target value of the DL (35 mg kg-1 Ni) and 6 above standard values given in KP value (20 mg kg-1 Ni), Pb with range 27.06 ÷96.08 mg kg-1 with 1 sample above the target value of the DL (85 mg kg-1Pb) and 6 above standard values given in KP value (25 mg kg-1Pb), Zn with range 147÷273 mg kg-1 with 6 over target value of the DL (140 mg kg-1 Zn) and 6 above standard KP value (64 mg kg-1 Zn), V with range 34.44÷92.57 mg kg-1 with 5 over target value of the DL (42 mg kg-1 V) and one above KP value (90 mg kg-1 V).In order to compare the level of contamination, the contamination factor (𝐶𝑓 𝑖 ), degree of contamination (Cd), and pollution load index (PLI) were computed. Serious numbers were found for Cu, as, Zn, Co and Ni, which exceeded standard values at almost all samples from both vertical sections. Compared from section 1 and section 2, pollution load index increased by 13.43%, which in almost all samples was classified as heavily polluted to extremely polluted. The fact that mining activities at the Buchim Mine last for almost 40 years, the presence of heavy metals in soils at a serious level is understandable. The high level of contamination is a result of heavy metal persistence and non-biodegradability.


2021 ◽  
Author(s):  
Harikrishnan Sadanandan ◽  
Senthil Nathan Dharmalingam ◽  
Nitin Agarwal ◽  
Sridharan Mouttoucomarassamy ◽  
Anbuselvan Nagarajan

Abstract The study of heavy metal distribution in the shelf sediments of Southwestern part of Bay of Bengal is essential in determining the distribution pattern and to understand the consequences of marine pollution beside the coastal environment. The south eastern coastal areas of India are affected by several disturbances and contamination associated with accelerated industrialization and urbanization. Twenty-nine surface sediment samples were collected from shelf region of Southwestern part of Bay of Bengal and analyzed for sediment texture, organic matter and heavy metals. Pollution indices such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Contamination Factor (CF) as well as multivariate statistical analyses were used to recognize the pollution pattern and probable sources for metal contamination. Comparatively, the concentration of heavy metals in the study area is closely associated with finer fractions and organic matter. The results demonstrate that Cu, Co, Mn, Pb, Zn, Cr and Ni in most of the sites are extremely contaminated in terms of Igeo. The computed values of CF indicate very high contamination of the metals like Pb, Zn and Cr followed by uncontamination to moderate contamination of Cu, Mn, Ni, Co. Based on factor analysis, domestic and industrial activities from adjacent land areas are found to be the major contributors of heavy metals in the shelf sediments.


Author(s):  
K. O. Ondoo ◽  
J. K. Kiptoo ◽  
A. O. Onditi ◽  
S. M. Shivaji ◽  
J. K. Ogilo

Agricultural activities, discharge of raw sewage into farms and the rise in urbanization have greatly contributed to soil pollution. During the rainy season, surface runoff from farms find their way into water bodies and deposits these contaminants into Rivers and Lakes which poses a threat to both aquatic and terrestrial organisms that depend on that water source. The objective of this research was to determine the level of anions and heavy metals from sediments in River Sio, Busia County, Kenya. Five sediment samples were taken from five sampling points and the levels of anions and heavy metals in them determined. Anions were determined using Shimadzu 1800 UV/visible spectrophotometer while heavy metals were determined using Shimadzu 6200 flame atomic absorption spectrophotometer (AAS). Copper, lead and nickel were above the allowed WHO limits while cadmium was below detection limit. The levels of nitrates, phosphates and chlorides were higher during the wet season due to surface runoff that carried these nutrients from the farms and deposited them on the bottom of the River. The levels of heavy metals were high during the dry season due to evaporation of water from the River, leading to an increase in the analyte concentration during the dry season. High levels of copper and nickel in the sediments points to the use of herbicides and pesticides in farming and washing of vehicles and motorcycles on the banks of the River. According to Igeo nickel showed moderate pollution during the dry season. The contamination factor for lead was very high during the dry season, while pollution load index confirmed pollution due to anthropogenic activities in sampling sites 1 – 4 during the dry season and no pollution due to anthropogenic activities during the wet season.  The study recommends reduced use of inorganic fertilizers in order to save the River from the danger of eutrophication. Excessive use of agrochemicals such as herbicides and pesticides should be discouraged. In addition, pesticide leaching and the level of microbes in soil and sediments should be considered for further research


Author(s):  
A. Benarabi ◽  
M. S. Nili ◽  
A. Douadi

Soil is contaminated with various potentially harmful metals (PTMs). Therefore, the adequate protection of soil from contamination is imperative, as the soil is regarded as the primary cradle for living and environmental balance. Accordingly, the purpose of this study was to assess the contamination level by PTMs in Touggourt city, where soil samples have been collected randomly from 18 sites. These sites included manufacturing companies and institutions belonging to the industrial region of Touggourt city. The concentrations of six PTMs - zinc (Zn), iron (Fe), cobalt (Co), copper (Cu), lead (Pb) and manganese (Mn) were assessed using the atomic absorption spectrophotometer (AAS) instrument as well as the application of the modern pollution indices such as CF (Contamination Factor), PLI (Pollution Load Index) and EF (Enrichment Factor). The highest values of contamination factor (CF) for Zn, Fe, Co, Cu, and Pb were 0.605, 1.605, 0.277, 0.05, 0.438, and 0.01, respectively, and the highest value of pollution load index (PLI) was 0.139, while the results of enrichment factor (EF) for the Zn, Mn, Co, Cu and Pb metals were 2.608, 0.060, 0.740, 0.122, and 2.358, respectively. According to these pollution indices, the results of this study have indicated that human effects or industrial wastes and traffic, in particular, were the sources of heavy metal contaminating the studied region.


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


Author(s):  
U. U. Ubong ◽  
I. O. Ekwere ◽  
E. E. Ikpe

This study evaluates the physico-chemical parameters and heavy metals in water, sediments and Tympanotonus fuscatus obtained from three sample sites along Iko River in Eastern Obolo LGA, AkwaIbom State. The heavy metal analysis results on Pb, Cd and Ni in sediments and Tympanotonus fuscatus were used to estimate the human health and ecological risk assessment of the study area. The human health risk assessment tools utilized in this study were estimated dietary intake (EDI), total hazard quotient (THQ) and hazard index (HI) while sediment pollution parameters evaluated were contamination factor (CF), contamination degree (CD), pollution load index (PLI) and geoaccumulation index (Igeo). Results obtained showed that EDI of Cd in periwinkle in the study sites ranged from 0.2 – 6.4 µg/kg-bw/day and exceeded the provisional tolerable dietary intake (PTDI), while EDI for Pb (0.0004 – 2.6 µg/kg-bw/day) and Ni (0.32 – 2 µg/kg-bw/day) was within the limit for all sites, except Ni in site II (34 µg/kg-bw/day) which was higher than the PTDI of 5 µg/kg-bw/day. The THQ of Cd in all sites was greater than 1, while Pb and Ni generally recorded THQ < 1. The hazard index (HI) was as follows: site I (2.36), sites II (24.44) and site III (6.5), highlighting a potential hazardous effect to humans as a result of the consumption of Tympanotonus fuscatus obtained from site II and III. The sediment pollution assessment revealed that the contamination factor (CF) and geoaccumulation index, Igeo of Cd were far above the permissible limits while Pb and Ni were mostly within limits. The estimated contamination degree (CD) and pollution load index (PLI) showed a high degree of pollution, which can be mainly attributed to the high degree of Cd contamination in the sediment. Therefore, the area under investigation is highly polluted and the periwinkle obtained from Iko river in the study area is unfit for human consumption.


2016 ◽  
Vol 10 (3) ◽  
pp. 41-46
Author(s):  
Soheil Sobhanardakani ◽  
◽  
Mehrnaz Ghoochian ◽  

Background: Soil and sediment serve as major reservoir for contaminants as they possess ability to bind various chemicals together. In this study the concentrations of heavy metals Cd, Cr and Cu were analyzed in surface sediments of Agh Gel Wetland in west of Iran. Methods: The sediment samples were taken from 10 stations. The samples were subjected to bulk digestion and chemical partitioning and Cd, Cr and Cu concentrations of the sediments were determined by ICP-OES. Geo-accumulation index (I-geo), Contamination factor (CF) and Pollution load index (PLI) were used to evaluate the magnitude of contaminants in the sediment profile. Results: The mean sediment concentrations (mg kg-1 dry weight) ranged within 0.20-0.29 (Cd), 58-71 (Cr) and 23-36 (Cu). According to the I-geo values, the sediments' qualities are classified as unpolluted to moderately polluted category. According to the CF values, the sediments' qualities are classified as low to moderate contamination. Furthermore, the PLI values indicated that there were no metal pollution exists for all sampling stations. Conclusion: The Agh Gel Wetland is potential to be threatened by chemical pollutants such as agricultural effluent. So to preserve the environment of the Agh Gel Wetland from deterioration, periodically monitoring of the water and sediment qualities is recommended.


Sign in / Sign up

Export Citation Format

Share Document