scholarly journals Provisions for seismic detailing of column-beam connections according to SNI 2847:2019

2021 ◽  
Vol 921 (1) ◽  
pp. 012032
Author(s):  
H Tumengkol ◽  
R Irmawaty ◽  
H Parung dan ◽  
A Amiruddin

Abstract This research discusses seismic detailing for column-beam connections based on the special moment-hoe frame system (SPRMK) stipulated in the concrete regulations of SNI 2847:2019. Exterior-type column-beam connections with beam sizes of 200 mm × 300 mm and column sizes of 300 mm × 300 mm. The beam span is 1450 mm and the column height is 2850 mm. The reinforcement used in the beam diameter D13 as much as 6 pieces with a barge diameter of 8 mm. In the column, the main reinforcement diameter is D16 as much as 8 pieces with a barge reinforcement diameter of 8 mm with a distance of 75 mm. The detailing provisions are based on SNI 2847:2019 specifically in article 18.6, article 18.7, and article 18.8. Based on this provision obtained for detailing the connection of the column including blocks, columns, and joints meet the requirements specified in SNI 2847:2019.

Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
Irwin Bendet ◽  
Nabil Rizk

Preliminary results reported last year on the ion etching of tobacco mosaic virus indicated that the diameter of the virus decreased more rapidly at 10KV than at 5KV, perhaps reaching a constant value before disappearing completely.In order to follow the effects of ion etching on TMV more quantitatively we have designed and built a second apparatus (Fig. 1), which incorporates monitoring devices for measuring ion current and vacuum as well as accelerating voltage. In addition, the beam diameter has been increased to approximately 1 cm., so that ten electron microscope grids can be exposed to the beam simultaneously.


Author(s):  
T. Koshikawa ◽  
Y. Fujii ◽  
E. Sugata ◽  
F. Kanematsu

The Cu-Be alloys are widely used as the electron multiplier dynodes after the adequate activation process. But the structures and compositions of the elements on the activated surfaces were not studied clearly. The Cu-Be alloys are heated in the oxygen atmosphere in the usual activation techniques. The activation conditions, e.g. temperature and O2 pressure, affect strongly the secondary electron yield and life time of dynodes.In the present paper, the activated Cu-Be dynode surfaces at each condition are investigated with Scanning Auger Microanalyzer (SAM) (primary beam diameter: 3μmϕ) and SEM. The commercial Cu-Be(2%) alloys were polished with Cr2O3 powder, rinsed in the distilled water and set in the vacuum furnance.Two typical activation condition, i.e. activation temperature 730°C and 810°C in 5x10-3 Torr O2 pressure were chosen since the formation mechanism of the BeO film on the Cu-Be alloys was guessed to be very different at each temperature from the results of the secondary electron emission measurements.


Author(s):  
Oliver C. Wells

The low-loss electron (LLE) image in the scanning electron microscope (SEM) is useful for the study of uncoated photoresist and some other poorly conducting specimens because it is less sensitive to specimen charging than is the secondary electron (SE) image. A second advantage can arise from a significant reduction in the width of the “penetration fringe” close to a sharp edge. Although both of these problems can also be solved by operating with a beam energy of about 1 keV, the LLE image has the advantage that it permits the use of a higher beam energy and therefore (for a given SEM) a smaller beam diameter. It is an additional attraction of the LLE image that it can be obtained simultaneously with the SE image, and this gives additional information in many cases. This paper shows the reduction in penetration effects given by the use of the LLE image.


Author(s):  
G. Lehmpfuhl ◽  
P. J. Smith

Specimens being observed with electron-beam instruments are subject to contamination, which is due to polymerization of hydrocarbon molecules by the beam. This effect becomes more important as the size of the beam is reduced. In convergent-beam studies with a beam diameter of 100 Å, contamination was observed to grow on samples at very high rates. Within a few seconds needles began forming under the beam on both the top and the underside of the sample, at growth rates of 400-500 Å/s, severely limiting the time available for observation. Such contamination could cause serious difficulty in examining a sample with the new scanning transmission electron microscopes, in which the beam is focused to a few angstroms.We have been able to reduce the rate of contamination buildup by a combination of methods: placing an anticontamination cold trap in the sample region, preheating the sample before observation, and irradiating the sample with a large beam before observing it with a small beam.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
S. Lehner ◽  
H.E. Bauer ◽  
R. Wurster ◽  
H. Seiler

In order to compare different microanalytical techniques commercially available cation exchange membrane SC-1 (Stantech Inc, Palo Alto), was loaded with biologically relevant elements as Na, Mg, K, and Ca, respectively, each to its highest possible concentration, given by the number concentration of exchangeable binding sites (4 % wt. for Ca). Washing in distilled water, dehydration through a graded series of ethanol, infiltration and embedding in Spurr’s low viscosity epoxy resin was followed by thin sectioning. The thin sections (thickness of about 50 nm) were prepared on carbon foils and mounted on electron microscopical finder grids.The samples were analyzed with electron microprobe JXA 50A with transmitted electron device, EDX system TN 5400, and on line operating image processing system SEM-IPS, energy filtering electron microscope CEM 902 with EELS/ESI and Auger spectrometer 545 Perkin Elmer.With EDX, a beam current of some 10-10 A and a beam diameter of about 10 nm, a minimum-detectable mass of 10-20 g Ca seems within reach.


Author(s):  
JR Fryer ◽  
Z Huang ◽  
D Stirling ◽  
G. Webb

Platinum dispersed on γ-alumina is used as a reforming catalyst to convert linear hydrocarbons to cyclic aromatic products. To improve selectivity and lifetime of the catalyst, other elements are included, and we have studied the distributions of Pt/Re, and Pt/Sn, bimetallic systems on the support both before and after use in octane reforming. Often, one or both of the components are not resolvable by HREM or microanalysis as individual particles because of small size and lack of contrast on the alumina, and divergent beam microanalysis has been used to establish the presence and relationship between the two elements.In the majority of catalysts the platinum is in the form of small panicles, some of which are large enough to be resolvable in the microscope. The ABT002B microscope with Link windowless Pentafet detector, used in this work, was able to obtain a resolvable signal from particles of 2nm diameter upwards. When the beam was concentrated on to such a particle the signal was at a maximum, and as the beam diameter was diverged - at the same total beam intensity and dead time - the signal decreased as shown in Figure 1.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


MedPharmRes ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 15-19
Author(s):  
Son Nguyen ◽  
Son Vi ◽  
Hoat Luu ◽  
Toan Do

There are cases when symptoms are available but no abnormal stenosis is found in MRI and vice versa. Axial-loaded MRI has been shown that it can demonstrate more accurately the real status of spinal canal stenosis than conventional MRI. This is the first time we applied a new system that we have recreated from the original loading frame system in order to fit with the demands of Vietnamese people. Sixty-two patients were selected from Phu Tho Hospital in Phu Tho Province, Vietnam, who fulfilled the inclusion criteria. The Anterior-posterior diameter (APD), Dura Cross-sectional Area (DSCA) in conventional MRI and axial loaded MRI, and changes in APD and DCSA were determined at the single most constricted intervertebral level. The APD and DCSA in axial loaded MRI had very good significant correlations with VAS for back pain (rs=0.83, 0.79), leg pain (rs=0.69, 0.57) and JOA score (rs=0.70, 0.65). APD and DCSA in axial loaded MRI significantly correlated with the severity of symptoms. Our axial loading MRI provides more valuable information than the conventional MRI for assessing patients with LSCS.


Sign in / Sign up

Export Citation Format

Share Document