scholarly journals Controlled experiment of underwater vision-based mapping: A preliminary evaluation

2021 ◽  
Vol 925 (1) ◽  
pp. 012054
Author(s):  
F Muhammad ◽  
Poerbandono ◽  
H Sternberg

Abstract Underwater vision-based mapping (VbM) constructs three-dimensional (3D) map and robot position simultaneously out of a quasi-continuous structure from motion (SfM) method. It is the so-called simultaneous localization and mapping (SLAM), which might be beneficial for mapping of shallow seabed features as it is free from unnecessary parasitic returns which is found in sonar survey. This paper presents a discussion resulted from a small-scale testing of 3D underwater positioning task. We analyse the setting and performance of a standard web-camera, used for such a task, while fully submerged underwater. SLAM estimates the robot (i.e. camera) position from the constructed 3D map by reprojecting the detected features (points) to the camera scene. A marker-based camera calibration is used to eliminate refractions effect due to light propagation in water column. To analyse the positioning accuracy, a fiducial marker-based system –with millimetres accuracy of reprojection error– is used as a trajectory’s true value (ground truth). Controlled experiment with a standard web-camera running with 30 fps (frame per-second) shows that such a system is capable to robustly performing underwater navigation task. Sub-metre accuracy is achieved utilizing at least 1 pose (1 Hz) every second.

2021 ◽  
Author(s):  
Netanel Kramer ◽  
Jiaao Guan ◽  
Shaochen Chen ◽  
Daniel Wangpraseurt ◽  
Yossi Loya

AbstractThe morphology and skeleton architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features optimize light capture under low-light environments. Using micro-computed tomography scanning, we conducted a comprehensive three-dimensional (3D) assessment of small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (5 m) and mesophotic (45 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite-scale, we developed 3D simulations of light propagation based on photosynthesis-irradiance parameters. We found that corals associated with shallow morphotypes dissipated excess light through self-shading microskeletal features; while mesophotic morphotypes facilitated enhanced light absorption and photosynthesis under low-light conditions. We conclude that the mesophotic coral architecture provides a greater ability to trap solar energy and efficiently exploit the limited light conditions, and suggest that morphological modifications play a key role in the photoadaptation response to low-light.


Author(s):  
J. Gailis ◽  
A. Nüchter

The scan matching based simultaneous localization and mapping method with six dimensional poses is capable of creating a three dimensional point cloud map of the environment, as well as estimating the six dimensional path that the vehicle has travelled. The essence of it is the registering and matching of sequentially acquired 3D laser scans, while moving along a path, in a common coordinate frame in order to provide 6D pose estimations at the respective positions, as well as create a three dimensional map of the environment. An approach that could drastically improve the reliability of acquired data is to integrate available ground truth information. This paper is about implementing such functionality as a contribution to 6D SLAM (simultaneous localization and mapping with 6 DoF) in the 3DTK – The 3D Toolkit software (Nüchter and Lingemann, 2011), as well as test the functionality of the implementation using real world datasets.


2008 ◽  
Vol 596 ◽  
pp. 103-132 ◽  
Author(s):  
P. VAISHNAVI ◽  
A. KRONENBURG ◽  
C. PANTANO

Spatial length scales of the rate of dissipation, χ, of fluctuations of a conserved scalar, Z, are inferred numerically using a DNS database of a turbulent planar jet flame. The Taylor-scale Reynolds numbers lie in the range of 38 to 58 along the centreline of the simulated jet flame. Three different methods are used to study the spatial length scales associated with χ. First, analysis of the one-dimensional dissipation spectra shows an expected Reδ−3/4 (Kolmogorov) scaling with the outer-scale Reynolds number, Reδ. Secondly, thin sheet-like three-dimensional scalar dissipation structures have been investigated directly. Such structures were identified within the computational domain using level-sets of the χ-field, and their thicknesses were subsequently computed. The study shows, in accordance with experimental studies, that the captured dissipation-layer thickness also shows a Kolmogorov scaling with Reδ. Finally, spatial filters of varying widths were applied to the instantaneous Z field in order to model the averaging effect that takes place with some experimental measurement techniques. The filtered scalar dissipation rate was then calculated from the filtered scalar field. The peaks in the instantaneous filtered χ-profiles are observed to decrease exponentially with increasing filter width, yielding estimates of the true value of χ. Unlike the dissipation length scales obtained from the spectral analysis and the level-set method, the length-scale estimates from the spatial-filtering method are found to be proportional to Reδ−1. This is consistent with the small-scale intermittency of χ which cannot be captured by techniques that just resolve the conventional Batchelor/Obukhov–Corrsin scale. These results have implications when considering resolution requirements for measuring scalar dissipation length scales in experimental flows.


2011 ◽  
Vol 30 (13) ◽  
pp. 1543-1552 ◽  
Author(s):  
Gaurav Pandey ◽  
James R McBride ◽  
Ryan M Eustice

In this paper we describe a data set collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck. The vehicle is outfitted with a professional (Applanix POS-LV) and consumer (Xsens MTi-G) inertial measurement unit, a Velodyne three-dimensional lidar scanner, two push-broom forward-looking Riegl lidars, and a Point Grey Ladybug3 omnidirectional camera system. Here we present the time-registered data from these sensors mounted on the vehicle, collected while driving the vehicle around the Ford Research Campus and downtown Dearborn, MI, during November–December 2009. The vehicle path trajectory in these data sets contains several large- and small-scale loop closures, which should be useful for testing various state-of-the-art computer vision and simultaneous localization and mapping algorithms.


2021 ◽  
pp. 027836492110049
Author(s):  
Jesús Morales ◽  
Ricardo Vázquez-Martín ◽  
Anthony Mandow ◽  
David Morilla-Cabello ◽  
Alfonso García-Cerezo

This article presents a collection of multimodal raw data captured from a manned all-terrain vehicle in the course of two realistic outdoor search and rescue (SAR) exercises for actual emergency responders conducted in Málaga (Spain) in 2018 and 2019: the UMA-SAR dataset. The sensor suite, applicable to unmanned ground vehicles (UGVs), consisted of overlapping visible light (RGB) and thermal infrared (TIR) forward-looking monocular cameras, a Velodyne HDL-32 three-dimensional (3D) lidar, as well as an inertial measurement unit (IMU) and two global positioning system (GPS) receivers as ground truth. Our mission was to collect a wide range of data from the SAR domain, including persons, vehicles, debris, and SAR activity on unstructured terrain. In particular, four data sequences were collected following closed-loop routes during the exercises, with a total path length of 5.2 km and a total time of 77 min. In addition, we provide three more sequences of the empty site for comparison purposes (an extra 4.9 km and 46 min). Furthermore, the data is offered both in human-readable format and as rosbag files, and two specific software tools are provided for extracting and adapting this dataset to the users’ preference. The review of previously published disaster robotics repositories indicates that this dataset can contribute to fill a gap regarding visual and thermal datasets and can serve as a research tool for cross-cutting areas such as multispectral image fusion, machine learning for scene understanding, person and object detection, and localization and mapping in unstructured environments. The full dataset is publicly available at: www.uma.es/robotics-and-mechatronics/sar-datasets .


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


2015 ◽  
Vol 19 (11) ◽  
pp. 4531-4545 ◽  
Author(s):  
J. Zhu ◽  
C. L. Winter ◽  
Z. Wang

Abstract. Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream–aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.


Sign in / Sign up

Export Citation Format

Share Document