scholarly journals Trombe Walls – Characteristic, Overview and Simple Case Study for Different Climate Conditions

2021 ◽  
Vol 943 (1) ◽  
pp. 012027
Author(s):  
A Oltarzewska ◽  
D A Krawczyk

Abstract Currently, when we spend a significant part of the day indoors, paying attention to indoor air quality and thermal comfort rise to prominence. Sometimes, improving these issues could be really simple and possible by using passive solar systems like Trombe walls. Because the implementation of solar walls is still problematic due to numerous barriers connecting with a system management or effectiveness in summer or winter period, many of researchers try to find the solutions, which could optimize them. This paper characterizes the main issues of Trombe walls, presents the current state of research on solar walls and provides a simple simulation of a building with a Trombe wall performed in TRNSYS software, for 3 variants of the system and 4 locations with different climatic conditions. It was estimated that system with Trombe wall and control strategies allows the building to maintain thermal comfort for more than 20% of the year, but effectiveness of Trombe walls depends largely on the climatic conditions and they should be considered only as an auxiliary support for HVAC systems.

Climate ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 100 ◽  
Author(s):  
Kurt Heil ◽  
Anna Lehner ◽  
Urs Schmidhalter

Field experiments were conducted to test different agronomic practices, such as soil cultivation, fertilization, and pest and weed management, in highly controlled plot cultivation. The inter-annual yields and the interpretation of such experiments is highly affected by the variability of climatic conditions and fertilization level. We examined the effect of different climate indices, such as winterkill, late spring frost, early autumn frost, different drought parameters, precipitation-free periods, and heat-related stress, on winter wheat yield. This experiment was conducted in an agricultural area with highly fertile conditions, characterized by a high available water capacity and considerable C and N contents in lower soil depths. Residuals were calculated from long-term yield trends with a validated method (time series autoregressive integrated moving average ARIMA) and these served as base values for the detection of climate-induced, short-term, and inter-annual variations. In a subsequent step, the real yield values were used for their derivations from climate factors. Residuals and real yields were correlated with climate variables in multiple regression of quantitative analyses of the yield sensitivity. The inter-annual variation of yields varied considerably within the observation period. However, the variation was less an effect of the climatic conditions during the main growing time periods, being more of an effect of the prevailing climate conditions in the winter period as well as of the transition periods from winter to the warmer season and vice versa. The high storage capacity of plant available water exerted a remarkable dampening effect on drought-induced effects during the main vegetation periods. Increasing fertilization led to increased susceptibility to drought stress. The results indicate a changed picture of the yield development in these fertile locations.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1076
Author(s):  
Raffaella Branciari ◽  
Andrea Onofri ◽  
Fausto Cambiotti ◽  
David Ranucci

The population of wild animals is increasing, and control strategies based on selective hunting are among the major options adopted. The game meat obtained is therefore available for controlled and certified valuable chains. The understanding of carcass contamination and the factors affecting it is therefore crucial to ensure meat safety and prolonged shelf-life. The carcass hygiene of 64 hunted wild male roe deer (Capreolus capreolus L.) was evaluated in relation to factors potentially affecting it. Aerobic colony and Enterobacteriaceae counts, as well as Salmonella spp. and Listeria monocytogenes detection, were performed. The interaction of the microbial determination with age and weight of the animals, the climate conditions, the shooting procedure, the time between the killing and the evisceration as well as the time of storage of the carcasses in refrigerated conditions before skinning, were evaluated. Neither Salmonella spp. nor Listeria monocytogenes were detected on the carcasses and the average loads detected were 3.39 ± 1.06 UFC/cm2 and 2.27± 1.11 UFC/cm2 for the aerobic colony count and Enterobacteriaceae count, respectively. The loads detected are similar to those reported by UE legislation for slaughtered species. The time of storage before skinning, the environmental temperature during hunting and the time between shooting and evisceration, associated with animal weight, affect the carcass hygiene and must be taken into careful consideration by hunters as food business operators.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyi Wang ◽  
Biao Chen ◽  
Tong Zhang ◽  
Guohui Zhou ◽  
Xin Yang

Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.


2003 ◽  
Vol 125 (3) ◽  
pp. 292-301 ◽  
Author(s):  
James E. Braun

This paper provides an overview of research related to use of building thermal mass for shifting and reducing peak cooling loads in commercial buildings. The paper presents background on the concept and the problem of optimizing zone temperature setpoints and provides specific results that have been obtained through simulations, controlled laboratory testing, and field studies. The studies have demonstrated significant savings potential for use of building thermal mass in commercial buildings. However, the savings are sensitive to many factors, including utility rates, type of equipment, occupancy schedule, building construction, climate conditions, and control strategy. The paper also attempts to provide an assessment of the state of the art in load control using building thermal mass and to identify the steps necessary to achieve widespread application of appropriate control strategies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ali Muhammad ◽  
Rida Bashir ◽  
Majid Mahmood ◽  
Muhammad Sohail Afzal ◽  
Sami Simsek ◽  
...  

Ectoparasites, including lice, ticks, and mites, inhabit the host skin and depend on their host for sustenance, maturation, and multiplication. Among these, ticks are more prevalent in various regions of Pakistan because of favorable climatic conditions, lack of awareness of livestock keepers' regarding ectoparasite infestation rate, insufficient veterinary services, and inadequate control measures. Ectoparasitic infestation is a primary threat to cost-effective livestock production by damaging skin and transmitting multiple diseases between animals. This review aimed to determine the infestation rates of various ectoparasites in cattle, buffaloes, sheep, goats, camels, equids and to ascertain the prevalence and epidemiology of ectoparasites in different regions of Pakistan. This review could be useful in devising prevention and control strategies and identifying the risk factors associated with ectoparasites to enhance animal productivity. It provides directions for veterinary schools, researchers, and organizations aiming to collaborate with neighboring countries to eradicate these parasites. Future studies could support working veterinarians and administrators and contribute to human well-being.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5043
Author(s):  
Ana Briga-Sá ◽  
Anabela Paiva ◽  
João-Carlos Lanzinha ◽  
José Boaventura-Cunha ◽  
Luís Fernandes

The Trombe wall is a passive solar system that can improve buildings energy efficiency. Despite the studies already developed in this field, more research is needed to assess the possibility of its integration in buildings avoiding user intervention. In this study, the influence of air vent management and materials’ heat storage capacity upon its thermal performance, particularly in the temperature fluctuation and indoor conditions, was discussed. Comparing two days with similar solar radiation (SR) for non-ventilated (NVTW) and ventilated (VTW) Trombe walls, a differential of 43 °C between the external surface temperature and the one in the middle of the massive wall was verified for NVTW, while for VTW this value was 27 °C, reflecting the heat transfer by air convection, which reduced greenhouse effect, solar absorption and heat storage. A cooling capacity greater than 50% was verified for VTW compared to NVTW during night periods. An algorithm for the Trombe wall’s automation and control was proposed considering SR as variable. Air vents and external shading devices should be open when SR exceeds 100 W/m2 and closed for 50 W/m2 to obtain at least 20 °C inside the room. Closing for 50 W/m2 and opening for values lower that 20 W/m2 is suggested for summer periods.


Author(s):  
Daniel Moga ◽  
Ioan-Valentin Sita ◽  
Nicoleta Stroia ◽  
Petru Dobra ◽  
Rozica Moga ◽  
...  

The purpose of this work is to assess the thermal comfort of a block-modular building on the construction site. The experimental studies for determining the thermal conditions of the cabins in the winter and the summer time of the city of Zhengzhou was carried out at different locations of the modular house made of sandwich panels for determining the category of living comfort. The variations of air temperature and relative humidity in the cabin were analyzed. The difference between outdoor and indoor air temperatures, as well as the changes in air temperature and heat flux on the internal surface of the different walls of the building by their location relative to the cardinal directions were considered. Reasons for decreasing the comfort in the room and the attenuation of the experimental amplitude of the outdoor temperature fluctuations in the enclosing structure as well as the thermal properties of enclosing structures of the block-modular building under different climatic conditions were studied. It is shown that it is necessary to take into account the reflection of heat inside the premises and their ventilation when designing enclosing structures of mobile buildings. It is revealed that in the winter period for energy saving it is necessary to increase in addition thermal characteristics of the western wall of domestic buildings.


2018 ◽  
Vol 17 (2) ◽  
pp. 20
Author(s):  
C. F. da Silva ◽  
R. Z. Freire ◽  
N. Mendes

The world's energy demand has raised concerns about supply difficulties, depletion of natural resources and environmental impacts such as destruction of ozone layer, global warming, climate change, among others. Recent studies indicate that energy consumption in buildings represents more than 40% of the world's energy consumption, with more than half of that attributed to air conditioning systems. Specific regulations and control strategies for heating, ventilation and air-conditioning (HVAC) systems should provide acceptable thermal comfort and reasonable indoor air quality. The evolution of researches in these areas can be evaluated by the organization of scientific production up to now. The objective of this study is to analyze quantitatively what was produced in terms of optimization associated to both energy savings and thermal comfort in buildings. This bibliometric analysis, based on Science Direct and IEEE Xplore databases, correlates common adopted terms to quantify how optimization, especially those associated to computational intelligence, are influencing building projects where thermal comfort and energy saving are taken into account. This research assumes a sample of 76 articles, and provided a statistical evaluation considering authors identification, and both articles and journals that were more cited by researchers in this area.


2020 ◽  
Vol 12 (3) ◽  
pp. 629-642
Author(s):  
Mikhail Varentsov ◽  
Natalia Shartova ◽  
Mikhail Grischenko ◽  
Pavel Konstantinov

AbstractThe assessment of bioclimatic conditions at the national scale remains a highly relevant task. It might be one of the main parts of the national strategy for the sustainable development of different regions under changing climatic conditions. This study evaluated the thermal comfort conditions and their changes in Russia according to gridded meteorological data from ERA-Interim reanalysis with a spatial resolution of 0.75° × 0.75° using the two most popular bioclimatic indices based on the human energy balance: physiologically equivalent temperature (PET) and universal thermal comfort index (UTCI). We analyzed the summer and winter means of these indices as well as the repeatability of different thermal stress grades for the current climatological standard normal period (1981–2010) and the trends of these parameters over the 1979–2018 period. We revealed the high diversity of the analyzed parameters in Russia as well as significant differences between the contemporary climate conditions and their changes in terms of mean temperature, mean values of bioclimatic indices, and thermal stress repeatability. Within the country, all degrees of thermal stress were possible; however, severe summer heat stress was rare, and in winter nearly the whole country experienced severe cold stress. Multidirectional changes in bioclimatic conditions were observed in Russia against the general background of climate warming. The European part of the country was most susceptible to climate change because it experiences significant changes both in summer and winter thermal stress repeatability. Intense Arctic warming was not reflected in significant changes in thermal stress repeatability.


Sign in / Sign up

Export Citation Format

Share Document