scholarly journals Development of the dual-channel frequency meter for measurements with hydrostatic pressure sensor

2021 ◽  
Vol 946 (1) ◽  
pp. 012018
Author(s):  
N S Stovbun ◽  
S A Gulyakov

Abstract The paper describes the process and the results of development of the dual-channel frequency meter, which function is to measure the output frequency generated by bottom-mounted pressure sensors. The sensors are actively used to monitor the marine environment. AVR family microcontrollers were used as the computing core of the presented device. This solution allows to obtain far lower power consumption, which is especially important when operating with no industrial power supply system in the coastal zone. As a result, we can deploy a reliable monitoring equipment capable of long-term saving data and if necessary transmit it for further processing. The developed frequency-meter is able to continually record the ambient temperature, atmospheric pressure and dynamically varying output frequency, which depends on hydrostatic pressure (sea level). To obtain more accurate data, we implemented a frequency measure method called reciprocal counter with lower relative error not affected by value of the output frequency. A laboratory experiment has been conducted, which confirms the suitability of the developed frequency meter for field-oriented conditions.

2014 ◽  
Vol 11 (11) ◽  
pp. 1010-1017 ◽  
Author(s):  
Seoul Hee Nam ◽  
Hyun Wook Lee ◽  
Jin Woo Hong ◽  
Hae June Lee ◽  
Gyoo Cheon Kim

2007 ◽  
Vol 16 (2) ◽  
pp. 139 ◽  
Author(s):  
Julie A. Winkler ◽  
Brian E. Potter ◽  
Dwight F. Wilhelm ◽  
Ryan P. Shadbolt ◽  
Krerk Piromsopa ◽  
...  

The Haines Index is an operational tool for evaluating the potential contribution of dry, unstable air to the development of large or erratic plume-dominated wildfires. The index has three variants related to surface elevation, and is calculated from temperature and humidity measurements at atmospheric pressure levels. To effectively use the Haines Index, fire forecasters and managers must be aware of the climatological and statistical characteristics of the index for their location. However, a detailed, long-term, and spatially extensive analysis of the index does not currently exist. To meet this need, a 40-year (1961–2000) climatology of the Haines Index was developed for North America. The climatology is based on gridded (2.5° latitude × 2.5° longitude) temperature and humidity fields from the NCEP/NCAR reanalysis. The climatology illustrates the large spatial variability in the Haines Index both within and between regions using the different index variants. These spatial variations point to the limitations of the index and must be taken into account when using the Haines Index operationally.


2019 ◽  
pp. 47-67
Author(s):  
A. A. Lyubushin ◽  
O. S. Kazantseva ◽  
A. B. Manukin

The results of the analysis of continuous precise time series of atmospheric pressure and groundwater level fluctuations in a well drilled to a depth of 400 m in the territory of Moscow are presented. The observations are remarkable in terms of their duration of more than 22 years (from February 2, 1993 to April 4, 2015) and by the sampling interval of 10 min. These long observations are suitable for exploring the stationarity of the properties of hydrogeological time series in a seismically quiet region, which is important from the methodological standpoint for interpreting the similar observations in seismically active regions aimed at earthquake prediction. Factor and cluster analysis applied to the sequence of multivariate vectors ofthe statistical properties of groundwater level time series in the successive 10-day windows after adaptive compensation for atmospheric pressure effects distinguish five different statistically significant states of the time series with the transitions between them. An attempt to geophysically interpret the revealed states is made. Two significant periods – 46 and 275 days – are established by spectral analysis of the sequence of the transitions times between the clusters.


Author(s):  
O.N. Dragunskiy ◽  
◽  
M. Rivkin ◽  

The need in considering changes (including sharp) of the atmospheric pressure during the operation of deep open pits as one of the unfavorable factors is substantiated. It is believed that the atmospheric pressure in a particular region varies slightly-within 30–40 mm Hg per year. But at the present time, when only in Russia there are five open pits with a depth of 500 m and more, it is impossible to ignore changes in the atmospheric pressure in relation to workers moving, for example, by motor transport, from the surface to the bottom of the open pit and back. In this case, it can change by 50 or more mm Hg in half an hour. To solve the related problems, it is required to find out how atmospheric pressure affects the blood pressure of the open pit workers. The experience of the Dead Sea Clinic located in Israel at the Dead Sea at a depth of more than 400 m below the sea level is taken as a basis. Long-term measurements of the blood pressure in patients of the clinic revealed a tendency to decrease it by an average of 10–20 mm Hg. To prevent the adverse effect of a sharp change in the atmospheric pressure on people working in deep open pits, it is required to provide for appropriate measures of a different nature: technological (provide for changes in the characteristics of the open pit roads to ensure smoother descents and ascents of the dump trucks); technical (use of the conveyor and combined transport); organizational (including changes in the work and rest regimes of the working employees); regulatory (amendments to the relevant safety rules and other normative documents). To apply the results obtained in the open pit mining, it is necessary to conduct appropriate research in the operating deep open pits.


2000 ◽  
Vol 203 (19) ◽  
pp. 3019-3023
Author(s):  
M. Theron ◽  
F. Guerrero ◽  
P. Sebert

Previous studies have suggested that the efficiency of oxidative phosphorylation in the freshwater eel (Anguilla anguilla) is increased after acclimation to high hydrostatic pressure. Analysis at atmospheric pressure of the respiratory chain complexes showed that, after 21 days at 10.1 MPa, the activity of complex II was decreased to approximately 50 % (P<0.01) of the control value and that cytochrome c oxidase (complex IV) activity was significantly increased to 149 % of the control value (P<0.05). ADP/O ratios calculated from mitochondrial respiration measurements were significantly increased after acclimation to high hydrostatic pressure (2.87 versus 2.52, P<0.001) when measured in the presence of pyruvate plus malate at atmospheric pressure. These results clearly show an increased oxidative phosphorylation efficiency in response to high-pressure acclimation.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000464-000487
Author(s):  
Maaike M. Visser Taklo ◽  
Branson Belle ◽  
Joachim Seland Graff ◽  
Astrid-Sofie Vardøy ◽  
Elisabeth Ramsdal

In order to minimize the influence of packaging stress on the signal of MEMS pressure sensors, the pressure inlet can be reduced in footprint and mechanically decoupled from the mechanically moving parts. Moreover, the formation of a hermetic seal between the sensor inlet and an external inlet becomes more challenging as the footprint is reduced. Soldering is a preferred solution as a hermetic seal is achievable despite some surface roughness at the surfaces to be joined. However, the metallization on the MEMS, the solder and the metallization on the external inlet must be carefully matched to assure long term stability; the solder will react quickly with the metal layers deposited on the surfaces during the reflow process and later at a reduced rate during storage and application. The formation of intermetallic compounds (IMC) can catastrophically degrade the integrity of a joint if large amounts of voids are formed or the mechanical compliance significantly reduces as a result of the IMC formation. The metallization alternatives for the MEMS in this case were sputtered TiW/Au and NiCr/Au. The TiW and NiCr are adhesion layers whereas the Au is applied as a wetting layer which is normally fully consumed during the soldering process. A thick layer of plated Au, or a thick layer of plated Ni with a thin surface finish layer of Au, were possible metallization alternatives for the external inlet. Dewetting of solder from TiW is frequently mentioned in literature, but less conclusive work is published about soldering to NiCr/Au [1–3]. In particular, limited work has been published on long term effects of soldering to NiCr/Au surfaces using a SAC solder. In this work TiW and NiCr were compared as adhesion layers. In addition, SAC and SnPb were compared as solder, and Au and Ni/Au were compared as metallization on the external inlet. A total of 10–20 assemblies were prepared for each of 12 tested combinations. Half of the assemblies were exposed to high temperature storage (HTS) for ~300 hours at 130–150 °C. Shear testing and inspection of fracture surfaces and cross sections using light microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were performed for samples


2019 ◽  
Vol 7 (8) ◽  
pp. 275 ◽  
Author(s):  
Picco ◽  
Schiano ◽  
Incardone ◽  
Repetti ◽  
Demarte ◽  
...  

A long-term time series of high-frequency sampled sea-level data collected in the port of Genoa were analyzed to detect the occurrence of meteotsunami events and to characterize them. Time-frequency analysis showed well-developed energy peaks on a 26–30 minute band, which are an almost permanent feature in the analyzed signal. The amplitude of these waves is generally few centimeters but, in some cases, they can reach values comparable or even greater than the local tidal elevation. In the perspective of sea-level rise, their assessment can be relevant for sound coastal work planning and port management. Events having the highest energy were selected for detailed analysis and the main features were identified and characterized by means of wavelet transform. The most important one occurred on 14 October 2016, when the oscillations, generated by an abrupt jump in the atmospheric pressure, achieved a maximum wave height of 50 cm and lasted for about three hours.


Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 210 ◽  
Author(s):  
Rico Rutkowski ◽  
Georg Daeschlein ◽  
Thomas von Woedtke ◽  
Ralf Smeets ◽  
Martin Gosau ◽  
...  

Despite increasing knowledge gained based on multidisciplinary research, plasma medicine still raises various questions regarding specific effects as well as potential risks. With regard to significant statements about in vivo applicability that cannot be prognosticated exclusively based on in vitro data, there is still a deficit of clinical data. This study included a clinical follow-up of five probands who had participated five years previously in a study on the influence of cold atmospheric pressure plasma (CAP) on the wound healing of CO2 laser-induced skin lesions. The follow-up included a complex imaging diagnostic involving dermatoscopy, confocal laser scanning microscopy (CLSM) and hyperspectral imaging (HSI). Hyperspectral analysis showed no relevant microcirculatory differences between plasma-treated and non-plasma-treated areas. In summary of all the findings, no malignant changes, inflammatory reactions or pathological changes in cell architecture could be detected in the plasma-treated areas. These unique in vivo long-term data contribute to a further increase in knowledge about important safety aspects in regenerative plasma medicine. However, to confirm these findings and secure indication-specific dose recommendations, further clinical studies are required.


Sign in / Sign up

Export Citation Format

Share Document