scholarly journals Effect Of Attapulgite as Internal Curing in High-Performance Concrete with Variable Temperature Curing to Enhance Mechanical Properties

2022 ◽  
Vol 961 (1) ◽  
pp. 012054
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Safaa S. Mohammed ◽  
Noor R. Kadhim ◽  
Yasir N. Kadhim

Abstract One of the most important elements in the development of compressive strength is concrete curing, and a large temperature differential during curing may decrease strength. This exudation is caused by microcracks in the concrete caused by the continuous temperature fluctuation. By minimizing autogenous shrinkage, internal curing has become popular for reducing the danger of early-age cracking in high-performance concrete (HPC). The efficacy of internal wet curing provided by fine Attapulgite aggregate is investigated in this research. On three different HPCs, both with and without internal curing materials, the development of observed mechanical properties is investigated. Two different amounts of normal weight fine aggregate were replaced with attapulgite fine aggregates. Internal cure has been found to benefit from attapulgite fine aggregates. It has been found that adding 20% Attapulgite fine aggregates to HPC enhances the material’s characteristics, resulting in low internal stress and a significant increase in compressive strength. It should be noted that, unlike certain conventional lightweight aggregates, the different amounts of Attapulgite fine aggregates added at various ages have shown no decrease in compressive strength.

2022 ◽  
Vol 961 (1) ◽  
pp. 012024
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Noor R. Kadhim ◽  
Safaa S. Mohammed ◽  
Ahmed Abdulmueen Alher

Abstract Concrete curing is one of the most significant factors in the development of compressive strength, and a high temperature difference during curing may reduce strength. The microcracks created in the concrete as a result of the constant temperature change cause this exudation. Internal curing has become popular for decreasing the risk of early-age cracking in high-performance concrete by limiting autogenous shrinkage (HPC). This study looks at the effectiveness of internal wet curing offered by a new kind of aggregate called “recycled waste porous ceramic fine aggregates”. The evolution of measured mechanical characteristics is examined on three distinct HPCs, both with and without internal curing materials. Ceramic fine aggregates were used to replace two different quantities of regular weight fine aggregate. Ceramic fine aggregates were shown to be quite beneficial for internal cure. It has been discovered that incorporating 20% ceramic fine aggregates into HPC improves the properties of the material, resulting in low internal stress and a large improvement in compressive strength. It should be emphasized that, unlike some traditional lightweight aggregates, no loss in compressive strength has been seen for the various quantities of ceramic fine aggregates introduced at either early or later ages.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2090 ◽  
Author(s):  
Francisco Javier Vázquez-Rodríguez ◽  
Nora Elizondo-Villareal ◽  
Luz Hypatia Verástegui ◽  
Ana Maria Arato Tovar ◽  
Jesus Fernando López-Perales ◽  
...  

In the present work, the effect of mineral aggregates (pumice stone and expanded clay aggregates) and chemical admixtures (superplasticizers and shrinkage reducing additives) as an alternative internal curing technique was investigated, to improve the properties of high-performance concrete. In the fresh and hardened state, concretes with partial replacements of Portland cement (CPC30R and OPC40C) by pulverized fly ash in combination with the addition of mineral aggregates and chemical admixtures were studied. The physical, mechanical, and durability properties in terms of slump, density, porosity, compressive strength, and permeability to chloride ions were respectively determined. The microstructural analysis was carried out by scanning electronic microscopy. The results highlight the effect of the addition of expanded clay aggregate on the internal curing of the concrete, which allowed developing the maximum compressive strength at 28 days (61 MPa). Meanwhile, the replacement of fine aggregate by 20% of pumice stone allowed developing the maximum compressive strength (52 MPa) in an OPC-based concrete at 180 days. The effectiveness of internal curing to develop higher strength is attributed to control in the porosity and a high water release at a later age. Finally, the lowest permeability value at 90 days (945 C) was found by the substitutions of fine aggregate by 20% of pumice stone saturated with shrinkage reducing admixture into pores and OPC40C by 15% of pulverized fly ash. It might be due to impeded diffusion of chloride ions into cement paste in the vicinity of pulverized fly ash, where the pozzolanic reaction has occurred. The proposed internal curing technology can be considered a real alternative to achieve the expected performance of a high-performance concrete since a concrete with a compressive strength range from 45 to 67 MPa, density range from 2130 to 2310 kg/m3, and exceptional durability (< 2000 C) was effectively developed.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2013 ◽  
Vol 368-370 ◽  
pp. 1052-1055
Author(s):  
Seung Jo Lee ◽  
Jung Min Park

The aim of the study is to improve the understanding of the influence of reinforcing fiber types on the mechanical properties of high performance concretes (HPC) subjected to high temperature. The mechanical properties measured include residual compressive strength, weight reduction ratio, outward appearance property, and failure mode. Nylon, polypropylene, and steel fiber were added to enhance mechanical property of the concretes. After exposure to high temperatures ranged from 100 to 800°C, mechanical properties of fiber-toughened HPC were investigated. For HPC, although residual compressive strength was decreased by exposure to high temperature over 500°C, weight reduction ratio was significantly higher than that before heating temperature.


Author(s):  
Faiq M. Al-Zwainy ◽  
Hussam k. Risan ◽  
Rana I. K. Zaki

The purpose of this study was to conduct a meta-analysis that shows the influence of fiber on ultimate compressive strength and tensile strength of ultra-high performance concrete. The internet scholarly search engines and ScienceDirect article references were used to illustrate the papers concerning the experimental investigations of mechanical properties of ultra-high strength concrete with and without fiber with clearly, completely and comparative raw data. The normal concrete test results were dismissed from this search. Seven trials were identified based on the adopted inclusion and exclusion criteria above. The meta-analysis based on standardized mean difference was carried out on the basis of a fixed-effects model for the major outcomes of the ultimate compressive and tensile properties of ultra-high performance concrete. A total of 888 test specimens were enrolled in these seven trials. The combined analysis yielded a sign of a significant improvement in ultimate compressive strength and tensile strength of ultra-high strength concrete with fiber addition of 2% by concrete volume. The summary effect size of ultimate compressive strength was 2.34 while a more improvement in term of tensile strength with effect size of 2.64. By addition fiber of 2% provides a significant benefit in mechanical properties of ultra-high performance concrete.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 770 ◽  
Author(s):  
How-Ji Chen ◽  
Yi-Lin Yu ◽  
Chao-Wei Tang

Compared with ordinary concrete, ultra-high performance concrete (UHPC) has excellent toughness and better impact resistance. Under high temperatures, the microstructure and mechanical properties of UHPC may seriously deteriorate. As such, we first explored the properties of UHPC with a designed 28-day compressive strength of 120 MPa or higher in the fresh mix phase, and measured its hardened mechanical properties at seven days. The test variables included: the type of cementing material and the mixing ratio (silica ash, ultra-fine silicon powder), the type of fiber (steel fiber, polypropylene fiber), and the fiber content (volume percentage). In addition to the UHPC of the experimental group, pure concrete was used as the control group in the experiment; no fiber or supplementary cementitious materials (silica ash, ultra-fine silicon powder) were added to enable comparison and discussion and analysis. Then, the UHPC-1 specimens of the experimental group were selected for further compressive, flexural, and splitting strength tests and SEM observations after exposure to different target temperatures in an electric furnace. The test results show that at room temperature, the 56-day compressive strength of the UHPC-1 mix was 155.8 MPa, which is higher than the >150 MPa general compressive strength requirement for ultra-high-performance concrete. The residual compressive strength, flexural strength, and splitting strength of the UHPC-1 specimen after exposure to 300, 400, and 500 °C did not decrease significantly, and even increased due to the drying effect of heating. However, when the temperature was 600 °C, spalling occurred, so the residual mechanical strength rapidly declined. SEM observations confirmed that polypropylene fibers melted at high temperatures, thereby forming other channels that helped to reduce the internal vapor pressure of the UHPC and maintain a certain residual strength.


Author(s):  
Mebarek Belaoura ◽  
Dalila Chiheb ◽  
Mohamed Nadjib Oudjit ◽  
Abderrahim Bali

This study aims at a better understanding of the behaviour of very high performance concretes (VHPC) subjected to high temperatures. The temperature increase within the concrete originating from the hydratation exothermic reaction of cement is emphasized by the mass effect of the structures and can lead to thermal variations of around 50°C between the heart and the structures walls. These thermal considerations are not without consequence on durability and the physical and mechanical properties of very high performance concrete, such as the compressive strength. This work is an experimental research that shows the effects of temperature on the mechanical properties of very high performance concrete (VHPC) and compares them with those of conventional concrete and HPC. Test specimens in usual concrete, HPC and VHPC are made, preserved till maturity of the concrete, and then subjected to a heating-cooling cycle from room temperature to 500°C at heating rate 0.1°C/min. Mechanical tests on the hot concrete and cooling (air and water) were realized. The results show that the mechanical characteristics of VHPC (density, compressive strength, tensile strength and elastic modulus) decrease with increasing temperature, but their strength remains higher than that of conventional concrete.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2014 ◽  
Vol 584-586 ◽  
pp. 1509-1513
Author(s):  
Nan Zhang ◽  
Juan Liao ◽  
Tao Zhang ◽  
Wen Zhan Ji ◽  
Bao Hua Wang ◽  
...  

The effect of very low temperature on high performance concrete (HPC) mechanical properties is studied by using a reasonable testing method. The results show that the compressive strengths of concrete are increasing with lower temperatures. Fly ash (FA), compared to ground granulated blast-furnace slag (GGBFS), is positive to the compressive strength increasing at low temperature. The splitting tensile strengths of concrete appear a maximum at-40°C~-80°C. The compound replacement by GGBFS and FA makes the splitting tensile strength present the extreme value at higher temperature. At very low temperature, the single or compound replacement by mineral admixtures can result in the difference of the relationship between compressive strength and splitting tensile strength, and the degradation of concrete subjected to cold-thermal shocks.


Sign in / Sign up

Export Citation Format

Share Document