scholarly journals Effect of electrode pressing force on the amount of energy supplied to interelectrode space in resistance projection welding with constant current welding machine

2021 ◽  
Vol 1061 (1) ◽  
pp. 012034
Author(s):  
A Yu Paliakou
2013 ◽  
Vol 712-715 ◽  
pp. 1235-1240
Author(s):  
Pei Wu ◽  
Yong An Zhang ◽  
Chuan Zhong Xuan ◽  
Yan Hua Ma

The dynamic mechanical responses of resistance welding machine,which is mainly governed by the mechanical parameters of the machine, is very important to the weld quality especially in projection welding when collapse or deformation of work piece occurs. In this paper, a mathematical model for characterizing the dynamic mechanical response of resistance welding machine and a special test set-up called breaking test set-up have been developed. Based on the model and the test results, the mechanical parameters of the machine were identified, including the equivalent mass, the damping coefficient, and the stiffness for both electrode systems.


2008 ◽  
Vol 580-582 ◽  
pp. 367-370 ◽  
Author(s):  
Yong Joon Cho ◽  
In Sung Chang ◽  
Heui Bom Lee

While resistance spot welding (RSW) has been the most successful sheet metal joining process in automotive industry, there are still certain quality and reliability issues due to the control system and its application process. Some weld spots have hard-to-reach areas and new materials make the process more complicated resulting in new challenges for quality welds. Recently, a new welding machine called one-sided RSW was introduced to make a weld of hard-to-reach areas in automotive application. Intelligent current regulation algorithm of welding machine timer helps to control welding current and time with more stablility than conventional constant current regulation. Newly developed RSW simulation tool is another advanced technology to improve weld quality and production stability. In this research, advanced RSW technologies, including one-sided RSW, intelligent adaptive control, and simulation of RSW process, are discussed with various automotive applications.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Author(s):  
Marco Cenzato ◽  
Roberto Stefini ◽  
Francesco Zenga ◽  
Maurizio Piparo ◽  
Alberto Debernardi ◽  
...  

Abstract Background Cerebellopontine angle (CPA) surgery carries the risk of lesioning the facial nerve. The goal of preserving the integrity of the facial nerve is usually pursued with intermittent electrical stimulation using a handheld probe that is alternated with the resection. We report our experience with continuous electrical stimulation delivered via the ultrasonic aspirator (UA) used for the resection of a series of vestibular schwannomas. Methods A total of 17 patients with vestibular schwannomas, operated on between 2010 and 2018, were included in this study. A constant-current stimulator was coupled to the UA used for the resection, delivering square-wave pulses throughout the resection. The muscle responses from upper and lower face muscles triggered by the electrical stimulation were displayed continuously on multichannel neurophysiologic equipment. The careful titration of the electrical stimulation delivered through the UA while tapering the current intensity with the progression of the resection was used as the main strategy. Results All operations were performed successfully, and facial nerve conduction was maintained in all patients except one, in whom a permanent lesion of the facial nerve followed a miscommunication to the neurosurgeon. Conclusion The coupling of the electrical stimulation to the UA provided the neurosurgeon with an efficient and cost-effective tool and allowed a safe resection. Positive responses were obtained from the facial muscles with low current intensity (lowest intensity: 0.1 mA). The availability of a resection tool paired with a stimulator allowed the surgeon to improve the surgical workflow because fewer interruptions were necessary to stimulate the facial nerve via a handheld probe.


1998 ◽  
Vol 536 ◽  
Author(s):  
E. M. Wong ◽  
J. E. Bonevich ◽  
P. C. Searson

AbstractColloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.


2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


2015 ◽  
Vol E98.C (6) ◽  
pp. 471-479
Author(s):  
Teerachot SIRIBURANON ◽  
Wei DENG ◽  
Kenichi OKADA ◽  
Akira MATSUZAWA

Sign in / Sign up

Export Citation Format

Share Document