scholarly journals Experimental Investigation on Wear Behaviour of AA6082 Aluminium Alloy, Tungsten Carbide and Graphite Hybrid Composites

2020 ◽  
pp. 491-494
Author(s):  
Kiran K ◽  
SuriyaPrakash M ◽  
Ravi Kumar K ◽  
Vijay Kumar M

In this experimental study, Aluminium alloy (AA) 6082 was strengthened with Tungsten Carbide and graphite through stir casting technique. Scanning Electron Microscope (SEM) was employed to study the wear performance of the Al/WC/Gr composites. Wear tests were carried out using a pin-ondisc apparatus. The input parameters in this study are the load applied (4, 8, 12, 16, and 20 kg), speed of sliding (1, 1.5, 2, 2.5 and 3 m/s) and distance slides (1000, 1500, 2000 and 2500 m). Response Surface Methodology (RSM) has been carried the use of MINITAB 14 software program to examine the rate of wear and frictional behaviour of the hybrid composites.

Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 895 ◽  
Author(s):  
Luca Boccarusso ◽  
Fabio Scherillo ◽  
Umberto Prisco

Microstructure, hardness, transverse rupture strength, and abrasion resistance of WC-10 wt% Co cemented carbides modified with the addition of different mass fraction of Cr3C2, in the range of 0–3 wt%, are studied. The influence of the microstructure, composition and hardness on the mechanical properties and wear resistance is analysed. Considering that the material under investigation can be used as die for the extrusion process of hard ceramic materials, the tribological behaviour was evaluated by performing sliding wear tests in wet conditions using a block-on-ring tribometer. Wear mechanism principally based on binder removal and subsequent fragmentation and microabrasion of the WC grains is proposed. Carbide grain size and bulk hardness can be tuned as function of specific applications by adding different amounts of Cr3C2. In particular, increasing hardness and reducing grain size by the addition of Cr3C2 are demonstrated to considerably enhance the wear performance of these carbides.


2010 ◽  
Vol 123-125 ◽  
pp. 1039-1042 ◽  
Author(s):  
S.P. Kumaresh Babu ◽  
Anand Chairman ◽  
N. Mohan ◽  
Siddaramaiah

The effect of tungsten carbide (WC) particulate fillers incorporation on two-body abrasive wear behaviour of glass fabric reinforced-epoxy (GE) composites was investigated and findings are interpreted. The wear behaviour of the composites were performed using pin-on-disc tester at varying abrasive distances viz., 25,50,75 and 100 m at a constant load of 20 N. The experiment was conducted using two different water proof silicon carbide (SiC) abrasive papers and at two different velocity under multi-pass condition. The wear loss of the composites found increasing with increase in abrading distances. A significant reduction in wear loss and specific wear rates were noticed after incorporation of WC filler into GE composite. This result indicates a significant improvement in wear resistance after incorporation of WC filler. The WC loaded systems exhibit less wear of matrix during abrasion which in turn facilitates lower fiber damage, due to the presence of WC particles on the counter surface which act as a transfer layer and effective barrier to prevent large-scale fragmentation. The worn out surface features were examined through scanning electron microscopy (SEM) in order to probe the wear mechanism.


2019 ◽  
Vol 16 (2) ◽  
pp. 725-728
Author(s):  
Prabhu G. Rubesh ◽  
P. Jayaseelan ◽  
Mona Sahu

The aim of this research is to fabricate aluminum based metal matrix composite and reviewing its tensile strength and wear behavior of produced test specimen. In this work an attempt is made to develop an aluminium based MMCs with reinforcing material and stir casting technique has been used to achieve this. Aluminum alloy (LM6) and Magnesium (Mg), Copper (Cu) was chosen as metal matrix and composite materials respectively, tensile and wear experiments has been conducted by varying the composition of Cu (0.150%, 0.175% and 2%) while keeping Mg (0.150%) as constant. The result shows that the increase in addition of copper increases the tensile strength and wears resistance and decreases the percentage of elongation.


2020 ◽  
Vol 856 ◽  
pp. 29-35
Author(s):  
Sweety Mahanta ◽  
M. Chandrasekaran ◽  
Sutanu Samanta

Aluminium matrix composites (AMCs) have emerged as the substitute for the monolithic (unreinforced) materials over the past few decades. The applications of AMCs are common in automotive, aerospace, defence and biomedical sectors due to its lower weight, high strength, high resistance against corrosion and high thermal and electrical conductivity. In this work, it is aimed fabricate a new class Al 7075 based hybrid composites reinforcing with nanoparticulates suitable for automotive application. Al7075 reinforced with fixed quantity of boron carbide (B4C) (1.5 wt.%) and varying wt % of flyash (0.5 wt.%, 1.0 wt.%, 1.5 wt.%) is fabricated using ultrasonic-assisted stir casting technique. Physical and mechanical characterization such as density, porosity, micro hardness, tensile strength and impact strength were estimated for three different compositions. The tensile strength and percentage increase in hardness value of the nanocomposite Al7075-B4C (1.5 wt. %)-flyash (0.5 wt. %): HNC3 found maximum as 294 MPa and 32.93%. In comparison with Al7075 alloy the impact strength of HNC3 shows the highest percentage of 9.31% respectively.


2015 ◽  
Vol 787 ◽  
pp. 658-663 ◽  
Author(s):  
B. Geetha ◽  
K. Ganesan

An Investigation was carried out to study the effect of red mud reinforcement in Al-6Si-0.45Mg alloy (A356) for improving hardness, wear rate and co-efficient friction. The red mud 53 micron size particles collected from MALCO, Mettur, Tamil Nadu, India, was preheated in a furnace to 500o C and mixed with molten Al-6Si-0.45Mg alloy to make the composite specimens. Al-6Si-0.45Mg alloy-red mud composite specimens were manufactured by stir casting technique using Al-6Si-0.45Mg alloy as matrix and reinforced with 5%, 10%, 15% and 20% volume percentages red mud as the reinforcement. The Al-6Si-0.45Mg alloy–red mud composite specimens were T6 heat treated to improve the mechanical properties. The artificial aging time and aging duration were varied to study their effect on mechanical properties of the composites. Then the specimens hardness, wear rate and coefficient of friction were tested as per ASTM standards. It was found that the hardness increased when the red mud content was increased in the base alloy at all the heat treatment conditions. The peak age timing which gives highest hardness was found to decrease with increased red mud content. The wear rate was decreased when the hardness was increased. The effect of solution treatment and artificial aging on the microstructure was also studied by microscopy.


2017 ◽  
Vol 13 (3) ◽  
pp. 91-99 ◽  
Author(s):  
Hussain J. M Alalkawi ◽  
Aseel A. Hamdany ◽  
Abbas Ahmed Alasadi

Abstract      In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue life of 10wt% nanocomposite was found to be increased by 33.37% and 39.58% for low-high and high-low loading sequences, respectively, compared to the metal-matrix cumulative life. Keywords: Al2O3 nanoparticles, AA6061/10wt%, constant and cumulative fatigue, MMCs.


2021 ◽  
Vol 15 (56) ◽  
pp. 217-228
Author(s):  
Milind K. Wasekar ◽  
Mohan P. Khond

The aim of this work is to investigate the influence of the addition of silicon carbide and molybdenum disulfide on the microstructure and the tensile strength of the Al-Flyash hybrid composites prepared using the stir casting technique. The composite with aluminum 6061 alloy as the matrix and flyash as the reinforcement, with different weight fractions, is investigated to study its microstructure and the tensile strength. The same has been compared with the hybrid composites with Aluminum-Flyash/SiC and Aluminum-Flyash/MoS2 for different weight fractions of the reinforcements. The tensile tests were conducted as per ASTM standard testing procedures at room temperature. From the results it is identified that tensile strength of the Al6061-Flyash composite is lesser than the Al6061-Flyash/SiC and Al6061-Flyash/MoS2 hybrid composites. It is also observed that increment in the composition of the SiC and MoS2 causes the increment in the tensile strength of the hybrid composite. This increment in the tensile strength is due to good interface bonding and uniform distribution of the reinforcements in the composite.


Sign in / Sign up

Export Citation Format

Share Document