scholarly journals Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA

Author(s):  
S Wahyuningsih ◽  
A H Ramelan ◽  
N S Suharty ◽  
M Handayani ◽  
F Firdiyono ◽  
...  
Keyword(s):  
2021 ◽  
Vol 1,2021 (1,2021(126)) ◽  
pp. 28-38
Author(s):  
Solonenko Lyudmila ◽  
Repyakh Sergei ◽  
Uzlov Kostiantyn

Abstract. Mixture sizes of sand-sodium-silicate conglomerates and sodium silicate solute content in them influences on the basic physical and technological indicators of molding and core mixtures structured in steam-microwave environment have been investigated. Sand-sodium-silicate mixture structured by steam-microwave environment (steam-microwave solidification method – SMS-process) composition has been optimized. Standard and generally accepted methods and techniques of molding mixtures investigation have beenused in this study. For mixtures manufacturing have been used: quartz sand brand 1K2O202; sodium silicate solute with silicate modulus of 2.8…3.0 and specific gravity of 1.42…1.44 g/cm3. Quartz sand cladding has been implemented with 0.5 and 2.5% sodium silicate solute (by weight, over 100% sand). Sand-sodium-silicate conglomerates have been scattered in sieves and conglomerates with sizes less than 0.315mm and with sizes from 0.315 to 0.63mm have been used for research. Mixture composition has been optimized according to results of simplex planning and experimental data by simplex triangles constructing and superimposing their formatted images on each other with darkened fields between isolines that do not meet of each parameters required level. To plot simplex lattices, model with simplex lattice plan of incomplete cube in Scheffe’s triple system has been used. For the first time, influence of mixture sand-sodium-silicate conglomerates sizes and sodium-silicate-solute content in them on basic indicators of mold and rod mixtures structured in steam-microwave environment has been established, and their composition has been optimized. Data obtained will be useful in molds and rods structured by SMS-process manufacturing. They will have predictable indicators of properties that correspond to their allowable level. Optimal composition of sand-sodium-silicate mixture, structured by SMS-process, is mixture of quartz sand, part of which passed through sieve with cell of 0.315 mm and have sodium silicate solute content (МSiO2=2.8…3.0, 2=1.42…1.44 g/сm3) in amount of 1.5% (by weight, over 100% quartz sand). Keywords.Sand, silicon silicate solute, steam-microwave solidification, optimization, conglomerates, strength, gas permeability, crushability, density, beam deflection, knockout energy.


Author(s):  
L.I Solonenko ◽  
S.I Repiakh ◽  
K.I Uzlov ◽  
I Mamuzich ◽  
O.P Bilyi ◽  
...  

Purpose. To establish regularities of changes in sand-sodium-silicate mixtures (SSSM) relative water resistance, structured by steam-microwave solidification method (SMS), on their structuring parameters and sodium silicate solute (SSS) dissolution conditions. Methodology. Technical purity water, SSS with 2.83.0 silicate modulus, quartz sand with 0.23 mm average particle size were used in this work. Studies were carried out on quartz sand samples, which were preliminarily cladded with 0.52.5% (by weight) SSS and structured by SMS method. The fracture time of structured mixtures was evaluated on cubic specimens with 20 mm rib length, which were immersed in water at different temperatures. Findings. Changes in SSSM water resistance in water regularities depending on their manufacturing, use and storage conditions were established. Recommendations for SSSM rods removal from castings in water were developed. Originality. For the first time, it has been established that relative water resistance of the SSSM structured by SMS method decreases along with increase in water temperature in which it is destroyed. Depending on SSS mass used for quartz sand cladding in range 0.52.5%, water resistance dependence on treatment in steam-microwave environment with 27 minutes running time acquires an inversion character with inversion point `3.1 minutes into the processing. For the first time, it has been discovered that in boiling water the relative water resistance of SSSM, structured by SMS-process and having preheating, monotonically increases with preheating temperature rising from 100 to 600 , sharply increases when heated to 600700 and practically becomes absolute after preliminarily preheating to higher temperatures. Practical value. Research results will be useful in concepts of processes accompanying destruction of structured sands with water-soluble binders expanding, as well as in technologies and equipment development designed for SSS rods and mold rests removing from castings.


2008 ◽  
Vol 47-50 ◽  
pp. 977-979
Author(s):  
Yi He Zhang ◽  
Jing Xing ◽  
Li Yu ◽  
Jin Hong Li

The geopolymer has been prepared from fly ash, metakaolin and Quartz sand, by using the liquid sodium silicate as structural template and sodium hydroxide solution as activator. The effect of glass fiber on the properties of the geopolymer has been studied.


Author(s):  
L.I Solonenko ◽  
S.I Repiakh ◽  
K.I Uzlov ◽  
A.V Dziubina ◽  
S.O Abramov

Purpose. Sand-sodium-silicate mixtures, structured by steam-microwave solidification, thermo-physical properties integral-effective values during Al-Mg alloy and graphite cast iron pouring determination. Sand-sodium-silicate mixture apparent density changing according to quartz sand, cladded with sodium silicate solute, fractional composition and its influence on BrA9Zh3L bronze microstructure establishment. Methodology. Quartz sand with 0.23 mm average particle size, sodium silicate solute, aluminum alloy with 8.5% Mg, flake graphite cast iron SCh200 (DSTU 8833:2019), bronze BrA9Zh3L (GOST 493-79) were used. Mixtures structuring was carried out in 700 W magnetron power microwave furnace. Sand-sodium-silicate mixture thermo-physical properties integral-effective values were calculated by G.A.Anisovich method, using castings results and molds thermography. Structured mixtures apparent density was determined on samples 50 120 mm dimension. Metallographic studies were realized using Neophot-21 optical microscope. Findings. It was found that with sodium silicate solute, used for sand cladding, amount increasing from 0.5 to 3% mold material apparent density decreases and thermal activity lowers. This leads to castings grains size increasing. Mixture sodium silicate solute content was recommended limiting 1.5% for fine-grained microstructure castings obtaining and cladded sand using, which particles pass through mesh side less 0.315 mm sieve. Sands with sodium silicate solute content more than 1.5%, which dont pass through sieve 0.4 mm mesh side, were recommended as casting molds heat-insulating material using. Originality. For the first time, when aluminum-magnesium alloy and graphite cast iron pouring, quartz sand cladded with sodium silicate solute in amount from 0.5 to 3.0% (weight, over 100% quartz sand), steam-microwave radiation structured, thermo-physical properties integral-effective values were determined. Practical value. Data obtained using will improve castings solidification time and rate analytical calculations accuracy, forecast level and residual stresses sign in them, shrinkage defects locations. This will reduce casting technology developing time and costs and castings manufacturability.


2020 ◽  
Vol 3 (62) ◽  
pp. 5-13
Author(s):  
L. Solonenko ◽  
◽  
S. Repiakh ◽  
K. Uzlov ◽  
T. Kimstach ◽  
...  

At the present, from among the known methods of sand-sodium-silicate mixtures structuring, the least studied, but the most promising, is the method of steam-microwave solidification. Among unexplored elements of steam-microwave solidification method is nature of mixtures destruction. This is especially important for determining the ways to increase the sand-sodium-silicate casting molds and cores strength before pouring and lowering their strength by the time when casting should be knocked out the mold and the core from cast product. Knowledge about mixture destruction nature is also necessary for appropriate technical solutions elaboration concerning sand regeneration. In this regard, the purpose of the present work has to be nature of sand-sodium-silicate mixtures structured by steam-microwave solidification method destruction establishing. Quartz sand cladded with sodium-silicate solute has been used in the present investigation. Mixture (cladded sand) structuring has been carried out by microwave radiation at nominal magnetron power of 700 W and radiation frequency of 2.45 GHz in area of standing waves. To cladded sand structuring, 1 g water portion has been added, which has been placed in bottom of container in which mixture has been microwave treated. To make decision on mixture destruction nature, images of structured mixtures destruction places within one grain (sand grain), which are typical for adhesive and cohesive character of destruction, obtained with scanning electron microscope have been used. It has been found that with sodium-silicate solute for quartz sand cladding mass content from 0.5 to 6 % (by weight) increasing, as well as with mixture processing by the method of steam-microwave solidification duration increasing, mixture compression ultimate strength increases according to dependence closed to exponential. Character of structured mixture destruction, in this case, is not depend on sodium-silicate solute used for quartz sand cladding content, but depends on steam-microwave solidification duration. With its time increasing it changes from adhesive to mix or from adhesive to mixed and cohesive.


2019 ◽  
Vol 1 (1) ◽  
pp. 81-92
Author(s):  
Repyakh S ◽  
Solonenko L ◽  
Bilyi O ◽  
Usenko R ◽  
Uzlov K

Article is devoted to the questions of structuring regularities detection in sodium silicate – sand mixtures and possibility of forecasting and changing their properties determination. Studies have been performed using quartz sand and sodium silicate solute, and also quartz sand placket with sodium silicate solute. It has been discovered that sand flow ability does not depend on the size of its particles, and the largest value acquires with the content of free water (moisture) less than 0.2% by weight. It has been established that apparent density of rare and placket sand, compacted by vibration, is additive to fractional mass content in it of particles normalized fractions and increases from 1100 to 1900 kg/m3 with average size of its grains decreasing from 0.82 to 0.16 mm and with their fineness modulus increasing from 20 to 60. According to experimental data, analytical relationship between content of sodium silicate in sodium silicate solute and specific density of sodium silicate solute has been elaborated. Estimation of sodium silicate solute drying method influence on residual water content in it has been realized. It has been shown that depending on sodium silicate solute amount in mixture, its physical state up to the time of mixture structuring beginning and method of solidification, the structure of solidified sodium silicate solute in structured sodium silicate – sand mixture may vary from dense-oriented to foam-disoriented, contain or not contain residual water. Obtained data using and recording will allow not only reduce the cost of new sodium silicate – sand mixtures developing, increase prediction of their properties accuracy, but also open a new direction for methods of their implementation in foundry molds and rods production.


Author(s):  
L. I. Solonenko ◽  
S. I. Repiakh ◽  
K. I. Uzlov ◽  
I. Mamuzich ◽  
T. V. Kimstach ◽  
...  

Purpose. Kinetics research and description of drying by microwave radiation mechanism development of quartz sand and its mixes with sodium silicate in limited quantity of water steam medium. Methodology. Distilled water, sodium silicate solute and quartz sand have been used in this research. Study has been performed on sand samples weighing 200 g. Mixtures drying and structuring have been performed by microwave radiation with power of 700W with frequency of 2.45 GHz in air and in saturated water weighing 1 g steam medium. Accuracy of temperature measurement is 1, mass is 0.02 g. Realized in this investigation drying kinetics has been specified as specimen weight change dependence and moisture evaporation from this mixture rate vs. drying duration. Dependencies have been built on the results of video recording and corresponding chrono-gravimetric measurements data digitalization. Mixtures during heating by microwave radiation temperature changes registration has been performed with an interval of 1560 s. Samples average heating rate has been estimated by calculation based on results in their temperature change determination during first 2 minutes of heating with microwave radiation. Findings. For the first time, microwave drying kinetics of quartz sand and its mixtures with sodium silicate in limited water medium (structured by SMS-process) has been studied. For the first time, based on SMS-process material balance, analytical dependence has been developed. This dependence application allows sand-sodium-silicate mixture structured by SMS-process maximum mass to calculate when using sodium silicate solute (silicate module 2.83.0) for quartz sand cladding and 1 g of saturated water steam for mixture structuring. It has been established that when mixtures structuring according to SMS-process water extraction from them takes place in three stages at ~100, 100108 and at 125138 . Maximum appropriate heating temperature of sand-sodium-silicate mixture during structuring by SMS-process has been recommended as ~125 . Exceeding of specified temperature leads to hydrated water from mixture releasing in steam form and its condensation on colder working surface of model-rod rigging. Resulting condensate leads to mixture restructuring in contact with equipment places and, accordingly, sharp quality deterioration in prepared molds and rods. For manufactured molds and rods quality stabilization, it has been recommended to pre-dry the quartz sand cladded with sodium silicate solute in microwave field for at least 3 minutes before structuring according to SMS-process. Originality. For the first time, data on drying kinetics has been obtained and quartz sand and its mixtures with sodium silicate in limited water steam medium microwave drying mechanism description has been developed. Influence of number of SMS-process basic parameters on structured quartz sand weight regularities has been established. Practical value. Research results will be useful in terms of ideas expanding about the processes that accompany granular materials drying, as well as in technologies and equipment for drying and structuring fine-grained dielectric materials and their mixtures development, creating new capillary-porous media, etc. under microwave radiation influence.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (2) ◽  
pp. 23-29 ◽  
Author(s):  
Wei-ming Wang ◽  
Zai-sheng Cai ◽  
Jian-yong Yu

Degumming of pre-chlorite treated jute fiber was studied in this paper. The effects of sodium hydroxide concentration, treatment time, temperature, sodium silicate concentration, fiber-to-liquor ratio, penetrating agent TF-107B concentration, and degumming agent TF-125A concentration were the process conditions examined. With respect to gum decomposition, fineness and mechanical properties, sodium hydroxide concentration, sodium silicate concentration, and treatment time were found to be the most important parameters. An orthogonal L9(34) experiment designed to optimize the conditions for degumming resulted in the selection of the following procedure: sodium hydroxide of 12g/L, sodium silicate of 3g/L, TF-107B of 2g/L, TF-125A of 2g/L, treatment time of 105 min, temperature of 100°C and fiber to liquor ratio of 1:20. The effect of the above degumming process on the removal of impurities was also examined and the results showed that degumming was an effective method for removing impurities, especially hemicellulose.


Sign in / Sign up

Export Citation Format

Share Document