scholarly journals Physical changes and FTIR analysis of kenaf core fiber heat treated in air

Author(s):  
H W Hussin ◽  
K Abdan ◽  
M S Salit ◽  
E S Bakar
2018 ◽  
Author(s):  
Arti Yadav ◽  
P. Narwal ◽  
Manjeet S. Dahiya ◽  
T. Dahiya ◽  
A. Agarwal ◽  
...  

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Zhezi Zhang ◽  
Mingming Zhu ◽  
Jianbo Li ◽  
Kai Zhang ◽  
Guoqing Shen ◽  
...  

In this study, the ignition and combustion behavior of raw and heat-treated single particles of lignite were experimentally investigated, with a focus on the effect of heat treatment temperatures. The lignite particles were heat treated to various final temperatures (473, 623 and 773 K) in nitrogen and characterized using proximate, ultimate, and Fourier transform infrared spectroscopy (FTIR) analysis. A single lignite particle of 2 or 3 mm in diameter was suspended on a silicon carbide fiber and burned in air in a horizontal tube furnace operating at 1123 K. The ignition and combustion process of the particle was record using a color CCD camera at 25 fps. The ignition mechanism, ignition delay time, volatile flame duration, and burnout time of the single particles were examined by processing the recorded images. The proximate and ultimate analysis results indicated that the volatile matter and oxygen contents decreased, while the carbon content increased with increasing temperature of heat treatment. This trend was consistent with observations in the FTIR analysis, in which the intensity of oxygen-containing functional groups decreased with increasing the heat treatment temperature. The ignition of raw and heat treated lignite particles followed a joint hetero-homogeneous mechanism under all conditions studied. The ignition delay time, volatile flame extinction time, and the total combustion time decreased with increasing heat treatment temperature up to 623 K. A further increase in the heat treatment temperature to 773 K resulted in prolonged key ignition and combustion characteristic times.


2012 ◽  
Vol 626 ◽  
pp. 1048-1053
Author(s):  
Norshahida Sarifuddin ◽  
Hanafi Ismail ◽  
Ahmad Zuraida

Recently, blending of common hydrocarbon polymer with natural based materials has gain much interest towards the development of degradable composite. In this study, a series of low density polyethylene (LDPE)/thermoplastic sago starch (TPSS) blend reinforced with kenaf core fiber (KCF) with starch content ranging from 10 to 40 % were prepared via melt-blending method. For this study, kenaf loading was fixed at 20 % (by weight). The blended samples were characterized by means of tensile test and morphological study. The experimental result shows that there is a gradual decrease in tensile strength, modulus and elongation at break with increase in starch loading. The scanning electron micrograph (SEM) supports the findings of tensile properties.


2010 ◽  
Vol 63 ◽  
pp. 408-413 ◽  
Author(s):  
Hrvoje Ivankovic ◽  
Sebastijan Orlic ◽  
Dajana Kranzelic ◽  
Emilija Tkalcec

Highly porous hydroxyapatite (Ca10(PO4)6(OH)2, HA) was prepared through hydrothermal (HT) transformation of aragonitic cuttlefish bones (Seppia Officinalis L. Adriatic Sea) in the temperature range from 140°C to 220°C for 20 minutes to 48 hours. Mechanism of hydrothermal transformation of bones was investigated by DTA/TG analyzer coupled online with FTIR spectrometric gas cell equipment (DTA-TG-EGA-FTIR analysis), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). DTA-TG-EGA-FTIR analysis have shown the release of CO2 at about 400°C, 680°C and 990°C. The first release could be attributed to organics not completely removed from the heat treated bones, and the second release to decomposition of unconverted aragonite, whereas, the third one could be attributed to CO3 2– groups incorporated in the structure of HA. The interconnecting porous morphology of the starting material (aragonite) was maintained during the HT treatment. The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed, which further transformed into nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Maytham Kadhim Obaid ◽  
Luqman Chuah Abdullah ◽  
Intidhar Jabir Idan

Evaluated removal of reactive orange 16 (RO16) dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC) as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficientsR2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficientsR2=0.9997forCo=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.


2017 ◽  
Vol 888 ◽  
pp. 188-192 ◽  
Author(s):  
Nur Suhaili Mohd Soberi ◽  
Rozyanty Rahman ◽  
Firuz Zainuddin

In this work polyurethane foam composites were prepared by using kenaf core fiber as filler at different percentages. Polyurethane foam acts as the matrix and was prepared by using palm oil based polyol and isocyanate with ratio of 1:1.1. From the results obtained, composites filled with kenaf core fiber showed lower mechanical properties i.e modulus and compression strength, up to 85% decrease. However the addition of kenaf core fiber decreases the rise time of the polyurethane foam composites. SEM micrograph analysis showed the evidence of irregular cell shape with the presence of kenaf core fiber. The percentage of kenaf core fiber plays crucial role in determining the composites properties.


Sign in / Sign up

Export Citation Format

Share Document