scholarly journals A comparison between mechanical properties of UHMWPE from ram extrusion process and UHMWPE from compression molding process for a hip joint liner

Author(s):  
M Wahyudi ◽  
Y E Putra ◽  
S Arrohman ◽  
J Jamari ◽  
R Ismail
Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 528 ◽  
Author(s):  
Antonio Greco ◽  
Francesca Ferrari ◽  
Maria Grazia Buccoliero ◽  
Greta Trono

This work is aimed at studying the suitability of ultra-high molecular weight polyethylene (UHMWPE) fibers for the production of polyethylene homo-composites processed by rotational molding. Initially pre-impregnated bars were produced by co-extrusion and compression molding of UHMWPE fibers and linear low-density polyethylene (LLDPE). A preliminary screening of different processing routes for the production of homo-composite reinforcing bars was performed, highlighting the relevance of fiber impregnation and crystalline structure on the mechanical properties. A combination of co-extrusion and compression molding was found to optimize the mechanical properties of the reinforcing bars, which were incorporated in the LLDPE matrix during a standard rotational molding process. Apart from fiber placement and an increase in processing time, processing of homo-composites did not require any modification of the existing production procedures. Plate bending tests performed on rotational molded homo-composites showed a modulus increase to a value three times higher than that of neat LLDPE. This increase was obtained by the addition of 4% of UHWMPE fibers and a negligible increase of the weight of the component. Dart impact tests also showed an increased toughness compared to neat LLPDE.


2016 ◽  
Vol 47 (5) ◽  
pp. 602-621 ◽  
Author(s):  
Rajkumar Govindaraju ◽  
Srinivasan Jagannathan

In this study, the compression molding process parameters for the development of silk fiber-reinforced polypropylene composites was optimized using Box–Behnken experimental Design with response surface methodology. The trimmed silk fibers from shuttleless loom silk selvedge waste were used as reinforcement in polypropylene fiber matrix. The process parameters of compression molding such as temperature (165–185℃), time (7–15 min) and pressure (35–45 bar) were optimized with respect to the mechanical properties of the silk fiber-reinforced polypropylene composite. The optimum parameters for better mechanical properties were found to be temperature, 180℃; time, 7 min, and pressure, 35 bar in compression molding. The optimised level of parameters has shown good response to the predicted model.


2013 ◽  
Vol 721 ◽  
pp. 153-158 ◽  
Author(s):  
Wei Dong Li ◽  
Gang Liu ◽  
Xiao Lan Hu ◽  
Xue Feng An ◽  
Xiang Yu Zhong ◽  
...  

A novel semi-prepreg resin transfer molding (RTM) process was developed to address difficulties associated with RTM process and to improve the mechanical properties of the resulting composites. Unidirectional semi-prepregs exhibiting relatively good overlay characteristics were prepared via prepolymerization of bismaleimide resin followed by wet winding. The processing characteristics and mechanical properties of composites fabricated via semi-prepreg RTM technology were compared with those of composites produced using a normal-prepreg compression molding process. Experimental results showed that the laminates fabricated by the semi-prepreg RTM process were of better internal quality and had superior mechanical properties as compared with laminates fabricated by the normal-prepreg compression molding process.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


2020 ◽  
Vol 62 (4) ◽  
pp. 395-399
Author(s):  
Jiehui Liu ◽  
Hongjun Hu ◽  
Yang Liu ◽  
Dingfei Zhang ◽  
Zhongwen Ou ◽  
...  

Abstract Compound extrusion (CE) is a newly developed plastic deformation technique which combines direct extrusion (DE) with a two-pass equal channel angular extrusion (ECAE). This paper focuses on the strength, ductility and anti-corrosion properties of an NaCl solution at certain concentrations and the wear-resistance of dry sliding AZ61 magnesium alloy prepared by CE and DE. It is found that the strength and elongation of the AZ61 alloy prepared by CE are enhanced because of grain refinement. Furthermore, AZ61 magnesium alloy made by CE displays higher corrosion and wear resistance than that prepared by DE. Experimental results prove that CE is a prospective manufacturing method for improving the mechanical properties, anti-corrosion and anti-wear of AZ61 magnesium alloy.


Sign in / Sign up

Export Citation Format

Share Document