Measurement and optimization of multi-attribute characteristics in milling epoxy granite composites using rsm and combined ahp-topsis

Author(s):  
R ArunRamnath ◽  
P. R. Thyla

Abstract Epoxy granite composites with its wide range of applications in machine tool industries are manufactured by molding process and require post cast machining operations to meet the desired dimensional accuracy for assembly of machine tool structures. In this research work, milling of epoxy granite composites are carried out based on the experimental design from Response Surface Methodology (RSM) techniques and further the optimal solutions are determined by a novel hybrid algorithm AHP-TOPSIS. Central Composite Design (CCD) model is applied with three factors-three levels and the measured output responses are thrust force, tangential force and surface roughness. Experimental combinations of 20 different trials are performed using high speed steel end mill cutter of diameter 10mm with three levels of input parameters: speed; fibre content and feed rate at a uniform depth of cut. The relative importance matrix formulated proved to be highly consistent with its consistency ratio to a maximum of 0.000641 which lies below the higher range of 0.1. Consistency ratio of 0.000641 reveals that the optimal solutions determined will be highly reliable and the decision making is much more judicious. Optimal solution determined from hybrid AHP-TOPSIS methods are: speed 1800 rpm; feed rate 0.03 m/min and 0% percent fibre content. Functional relationships among parameters and responses established by RSM are consistent upto 95% and its significance is tested by analysis of variance. Comparison among predicted and experimental values of three measured responses convey that the percentage variations are minimum with up to 2.03% for surface roughness, 2.50% for thrust force and 2.71% for tangential force components. This research work provides a systematic procedure and clear framework for determination of optimal machining conditions by hybrid methodology on the basis of technique for order preference by similarity to ideal solution (TOPSIS) combined with analytical hierarchy procedure (AHP) for attribute weights and further analyzes the influence of machining parameters over measured responses.

2020 ◽  
pp. 089270572093916
Author(s):  
Nafiz Yaşar ◽  
Mustafa Günay ◽  
Erol Kılık ◽  
Hüseyin Ünal

In this study, the mechanical and machinability characteristics of chitosan (Cts)-filled polypropylene (PP) composites produced by injection molding method were analyzed. Uniaxial tensile, impact, hardness, and three-point flexural tests were used to observe the influence of Cts filler on the mechanical behavior of PP. For the machinability analysis of these materials, drilling experiments based on Taguchi’s L27 orthogonal array were performed using different drill qualities and machining parameters. Then, machining conditions are optimized through grey relational analysis methodology for machinability characteristics such as thrust force and surface roughness obtained from drilling tests. The results showed that tensile, flexural strength, and percentage elongation decreased while impact strength increased with adding the Cts filler to PP. Moreover, it was determined that the tensile and flexural modulus of elasticity increased significantly and there was a slight increase in hardness. Thrust forces decreased while surface roughness values increased when the Cts filler ratio and feed rate was increased. The optimal machining conditions for minimizing thrust force and surface roughness was obtained as PP/10 wt% Cts material, uncoated tungsten carbide drill, feed rate of 0.05 mm/rev, and cutting speed of 40 m/min. In this regard, PP composite reinforced by 10 wt% Cts is recommended for industrial applications in terms of both the mechanical and machinability characteristics.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1181
Author(s):  
Dinh Son Tran ◽  
Victor Songmene ◽  
Anh Dung Ngo ◽  
Jules Kouam ◽  
Arturo Rodriguez-Uribe ◽  
...  

The machinability of composite materials depends on reinforcements, matrix properties, cutting parameters, and on the cutting tool used (material, coating, and geometry). For new composites, experimental studies must be performed in order to understand their machinability, and thereby help manufacturers establishing appropriate cutting data. In this study, investigations are conducted to analyze the effects of cutting parameters and drill bit diameter on the thrust force, surface roughness, specific cutting energy, and dust emission during dry drilling of a new hybrid biocomposite consisting of polypropylene reinforced with miscanthus fibers and biochar. A full factorial design was used for the experimental design. It was found that the feed rate, the spindle speed, and the drill bit diameter have significant effects on the thrust force, the surface roughness, and the specific cutting energy. The effects of the machining parameters and the drill bit diameter on ultrafine particles emitted were not statistically significant, while the feed rate and drill bit diameter had significant effects on fine particle emission.


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Mustafa ÖZDEMİR ◽  
Mehmet Tuncay KAYA ◽  
Hamza Kemal AKYILDIZ

In this study, effects of cutting speed (V), feed rate (f), depth of cut (a) and tool tip radius (R) on  surface roughness (Ra, Rz, and Rt) and cutting forces (radial force (Fx), tangential force (Fy), and feed force (Fz)) in hard finish turning processes of hardened 42CrMo4 (52 HRC) material was investigated experimentally. Taguchi’s mixed level parameter design (L18) is used for the experimental design (2x1,3x3). The signal-to-noise ratio (S/N) was used in the evaluation of test results.  By using Taguchi method, cutting parameters giving optimum surface roughness and cutting forces were determined. Regression analyses are applied to predict surface roughness and cutting forces. Analysis of variance (ANOVA) is used to determine the effects of the machining parameters on surface roughness and cutting forces. According to ANOVA analysis, the most important cutting parameters were found to be feed rate for surface roughness and depth of cut among cutting forces.  By conducting validation experiments, optimization was seen to be applied successfully.


2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


2019 ◽  
Vol 18 (3-2) ◽  
pp. 62-68
Author(s):  
Anis Farhan Kamaruzaman ◽  
Azlan Mohd Zain ◽  
Razana Alwee ◽  
Noordin Md Yusof ◽  
Farhad Najarian

This study emphasizes on optimizing the value of machining parameters that will affect the value of surface roughness for the deep hole drilling process using moth-flame optimization algorithm. All experiments run on the basis of the design of experiment (DoE) which is two level factorial with four center point. Machining parameters involved are spindle speed, feed rate, depth of hole and minimum quantity lubricants (MQL) to obtain the minimum value for surface roughness. Results experiments are needed to go through the next process which is modeling to get objective function which will be inserted into the moth-flame optimization algorithm. The optimization results show that the moth-flame algorithm produced a minimum surface roughness value of 2.41µ compared to the experimental data. The value of machining parameters that lead to minimum value of surface roughness are 900 rpm of spindle speed, 50 mm/min of feed rate, 65 mm of depth of hole and 40 l/hr of MQL. The ANOVA has analysed that spindle speed, feed rate and MQL are significant parameters for surface roughness value with P-value <0.0001, 0.0219 and 0.0008 while depth of hole has P-value of 0.3522 which indicates that the parameter is not significant for surface roughness value. The analysis also shown that the machining parameter that has largest contribution to the surface roughness value is spindle speed with 65.54% while the smallest contribution is from depth of hole with 0.8%. As the conclusion, the application of artificial intelligence is very helpful in the industry for gaining good quality of products.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


Author(s):  
Sadineni Rama Rao ◽  
G. Padmanabhan

The present work reports the electrochemical machining (ECM) of the aluminium-silicon alloy/boron carbide (Al-Si /B4C) composites, fabricated by stir casting process with different weight % of B4C particles. The influence of four machining parameters including applied voltage, electrode feed rate, electrolyte concentration and percentage of reinforcement on the responses surface roughness (SR) and radial over cut (ROC) were investigated. The process parameters are optimized based on the response surface methodology (RSM) and the optimum values for minimizing surface roughness and radial over cut are voltage 15.25 V, feed rate 1.0 mm/min, electrolyte concentration 13.56g/lit and percentage of reinforcement 7.36 wt%. The quality of the machined surfaces is studied by using scanning electron microscopic (SEM) images. The surface plots are generated to study the effect of process parameters and their interaction on the surface roughness and radial over cut, for the machined Al-Si/B4C composites.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrzej Matras

The paper studies the potential to improve the surface roughness in parts manufactured in the Selective Laser Melting (SLM) process by using additional milling. The studied process was machining of samples made of the AlSi10Mg alloy powder. The simultaneous impacts of the laser scanning speed of the SLM process and the machining parameters of the milling process (such as the feed rate and milling width) on the surface roughness were analyzed. A mathematical model was created as a basis for optimizing the parameters of the studied processes and for selecting the sets of optimum solutions. As a result of the research, surface with low roughness (Ra = 0.14 μm, Rz = 1.1 μm) was obtained after the face milling. The performed milling allowed to reduce more than 20-fold the roughness of the SLM sample surfaces. The feed rate and the cutting width increase resulted in the surface roughness deterioration. Some milled surfaces were damaged by the chip adjoining to the rake face of the cutting tool back tooth.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


Sign in / Sign up

Export Citation Format

Share Document