Investigating the utilization of blast furnace flue dusts and mill scale as raw materials in iron nugget production

2019 ◽  
Vol 6 (8) ◽  
pp. 0865d1
Author(s):  
Burak Birol
2014 ◽  
Vol 46 (1) ◽  
pp. 107-116 ◽  
Author(s):  
N.M. Gaballah ◽  
A.F. Zikry ◽  
M.G. Khalifa ◽  
A.B. Farag ◽  
N.A. El-Hussiny ◽  
...  

Mill scale is very attractive industrial waste since it is rich in iron (about = 72 % Fe) and it is suiTab. for direct recycling to the blast furnace via sintering plant. In this paper the characterizations of raw materials were studied by different methods of analyses. The produced briquettes were reduced with different amounts of hydrogen at varying temperatures, and the reduction kinetics was determined. Two models were applied and the energy of activation was calculated.


2015 ◽  
Vol 47 (1) ◽  
pp. 95-105 ◽  
Author(s):  
N.M. Gaballah ◽  
A.A.F. Zikry ◽  
N.A. El-Hussiny ◽  
El-D Khalifa ◽  
El-F Farag ◽  
...  

Mill scale is a very attractive industrial waste due to its elevated iron content (about = 69.33% Fe) besides being suiTab. for direct recycling to the blast furnace via sintering plant. In this paper the characteristics of raw materials and the briquettes produced from this mill scale were studied by different methods of analyses. The produced briquettes were reduced with different amounts of coke breeze at varying temperatures, and the reduction kinetics was determined. The activation energy of this reaction ? 61.5 kJ/mole for reduction of mill scale with coke breeze in the form of briquettes with 2% molasses where the chemical reaction interface model is applicable.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


Author(s):  
I. F. Iskakov ◽  
G. A. Kunitsyn ◽  
D. V. Lazarev ◽  
А. А. Red`kin ◽  
S. A. Trubitsyn ◽  
...  

To use effectively internal raw material base, JSC “Ural Steel” accomplished I category major overhaul of the blast furnace No. 2. The main purpose of the overhaul was to design a rational profile which could ensure an ability to operate with a charge containing 95 % of Mikhailovskii GOK (mining and concentrating plant) pellets having basicity of 0.5 by CaO/SiO2. The blast furnace No. 2 having useful volume of 1232 m3, was constructed by design of Danieli Corus, the Netherlands, and was blown in on December 30, 2020. In the process of guarantee tests, step-by-step increase of Mikhailovskii GOK pellets (Fetotal = 60.5 %, CaO/SiO2 = 0.5) content in the charge iron ore part was being accomplished from 55 to 95.1%. Charging of the blend containing pellets in the amount of 55% of iron ore part, was done by charging system 4OOCC + 1COOCC (Ore - Coke) with filling level 1.5 m. Under conditions of pellets part increase in the blend, the charging system was changed to decrease their content at the periphery, to increase it in the ore ridge zone and make it intermediate between periphery and the ore ridge. At the pellets share in the iron ore raw materials 0.75 the charging system was used as the following: 3OOCC + 1COOC + 1COOCC, while at the content 95.1% the following charging system was used: 2COOC + 2COOC + 1COOCC. It was noted that in the period of guarantee tests the furnace running was smooth. The average silicon content in the hot metal was 0.70% at the standard deviation 0.666. Sulfur content in the hot metal did not exceed 0.024%, the blowing and natural gas consumption figures were 2100 m3/min and 11000 m3/min correspondently, oxygen content in the blowing 26.5%, hot blowing and top smoke pressure figures were 226.5 and 109.8 KPa correspondently. The productivity of the furnace was reached as high as 2358 t/day at the specific coke rate 433 kg/t of hot metal. After guarantee tests completion, the pellets content in the iron ore part was decreased gradually from 95 down to 50%. The decreasing was made by 5% in every 6 hours of operation. Application of the mastered technology of the blast furnace No. 2 with the increased share of pellets will enable to stably supply the blast furnaces No. 1, 3 and 4 by iron ore raw materials in the proportion of 30-35% of pellets and 65-70% of sinter.


2015 ◽  
Vol 51 (2) ◽  
pp. 143-151 ◽  
Author(s):  
K.X. Jiao ◽  
J.L. Zhang ◽  
Z.J. Liu ◽  
Y.G. Zhao ◽  
X.M. Hou

A type of carbon composite brick was produced via the microporous technique using natural flack graphite, ?-Al2O3 and high-quality bauxite chamotte (Al2O3?87 mass%) as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.


2019 ◽  
Vol 964 ◽  
pp. 185-192
Author(s):  
Sungging Pintowantoro ◽  
Mas Irfan P. Hidayat ◽  
Fakhreza Abdul ◽  
Hamzah Syaifullah

The abundant of nickel ore resources in Indonesia and the regulations of Law of Coals and Minerals No. 4 year 2009 cause the development of nickel ore processing technology. One of the proven nickel ore processing technology is Mini Blast Furnace (MBF). When, the raw materials were fed to the MBF, there is a charging system to ensure good distribution of raw materials in MBF. The double bell charging system has an important role on the distribution of burden material in MBF. By optimizing the distribution and layers of the material burden, it will increase the stability and efficiency of the MBF process. Therefore, this study focused on analyzing the effect of large bell angle on the distribution of burden material in MBF using discrete element method. After analyzed, large bell angle differences produce different burden material distribution. For particle distribution, particles of small density (coal and dolomitee) tend to be concentrated in the center zone and particles of large density (ore) tend to be concentrated in the intermediate and peripheral zone. The larger angle of the large bell will increase particle falling velocity and the kinetic energy of the burden material. The most stable layer in MBF was obtained when using 65o bell angle. The MBF with 65o large bell angle is the best bell angle for MBF with capacity of 250 ton/day due to the greatest possibility of central working furnace operation.


2014 ◽  
Vol 644-650 ◽  
pp. 5451-5454
Author(s):  
Xu Bai ◽  
Shu Ming Wen ◽  
Shao Jun Bai ◽  
Chao Lv ◽  
Peng Xiang Zhang

In the blast furnace production process, the high iron content in the sludge produced by collecting, Iron can be used as recycled raw materials. Experimental study found that the use of magnetic roasting - weak magnetic iron powder method of recovering technology is feasible. The optimum conditions are: the grinding fineness is 87%, calcination temperature is 750 °C, roasting time is 25min, magnetic current is 1.5A under conditions to obtain a grade of 59% recovery rate of 79.3% iron ore .


2018 ◽  
Vol 931 ◽  
pp. 578-582
Author(s):  
Natalia D. Yatsenko ◽  
N.A. Vil'bitskaya ◽  
A.I. Yatsenko

The article deals with the use of blast furnace slag and mineralising additives as raw materials for the production of building materials. Innovative technologies of brick production from natural raw materials and industrial wastes are developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Yici Wang ◽  
Qi Jiang ◽  
Guoping Luo ◽  
Wenwu Yu ◽  
Yan Ban

In the process of glass-ceramics prepared with Baotou steel blast furnace slag, quartz sand, and other raw materials by melting method, the mutual influence of the special components such as CaF2, REXOY, TiO2, K2O, and Na2O in the blast furnace slag on the crystallization behavior of parent glass was investigated using differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the special components in slag can reduce the crystallization temperature and promote crystallization of glass phase, which belongs to surface crystallization of glass, and they cannot play the role of the nucleating agent; the major crystal phase composed of diopside, diopside containing aluminum and anorthite, is slightly different from the expected main crystal phase of diopside. Therefore, the nucleating agents of proper species and quantity must be added into the raw materials in order to obtain glass-ceramics. The results have important theoretical guidance meaning for realizing industrial production of Baotou steel blast furnace slag glass-ceramics preparation.


Sign in / Sign up

Export Citation Format

Share Document