scholarly journals Improving the corrosion resistance of LY12 aluminum alloy via a novel Mo-Zr-Ti composite conversion coating

Author(s):  
Xu zheng Qian ◽  
Wen Zhan ◽  
Jing jing Pan ◽  
Yi ting Liu ◽  
Feng Huang ◽  
...  
Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


2014 ◽  
Vol 881-883 ◽  
pp. 1385-1390
Author(s):  
Xian Fang Yang ◽  
Tian Quan Liang ◽  
Wei Wei ◽  
Dong Hui Deng ◽  
Guang Qiao Xu ◽  
...  

Preparation and the characteristics of environment-friendly Ce-Ti-Mn conversion coating on aluminum alloy 6061 were investigated by XRD, FESEM, EDS, TEM and AFM in this paper. It is indicated that coating characteristics such as the surface morphologies, microstructure and corrosion resistance, are greatly influenced by the formation technology at room temperature. The constituents and their concentration, and pH value of the conversion solution have an important role on the feature of Ce-Ti-Mn conversion film, which will significantly influence on the continuity, compactness and the crystalline structure of particles of the film. The concentrations of the main salt K2TiF6and oxidizer KMnO4have significant effect on the characteristics of the conversion coating. The Ce-Ti-Mn film grows in a lamellar way, composing of oxide and/ or hydroxide phases of Ce, Ti and Mn, some of which are amorphous. The formation mechanism of the Ce-Ti-Mn conversion coating is discussed in detail.


2019 ◽  
Vol 71 (3) ◽  
pp. 419-429 ◽  
Author(s):  
Wen Zhan ◽  
Xuzheng Qian ◽  
Boyi Gui ◽  
Lian Liu ◽  
Xiaohui Liu ◽  
...  

2012 ◽  
Vol 182-183 ◽  
pp. 241-244
Author(s):  
Cheng Bao Xia ◽  
Wen Jun Ge ◽  
Hou Chuan Yang

In order to improve the repairing quality of aircraft envelope of the aluminum alloy LY12, the cerium conversion coating technology was studied by using the surface modification technique. Principle experiment was on the basis of aviation repair technological requirement, refers to the related technique, through examination of corrosion resistance and wear resistance performance of cerium conversion coating, the principal composition of the formula for making cerium conversion coating:Ce(NO3)3 + KMnO4+ Ce-1 (chemical additive), In order to determine each composition of the formula and the technology parameters scientifically, L9(34) orthogonal testing method was adopted, and the formula of surface modification solution was optimized, the technological conditions for making cerium conversion coating on the surface of aircraft envelope were determined. Results of corrosion resistance and wear resistance of the cerium conversion coating on the surface of the aluminum alloy LY12 aircraft envelope obtained by the new technology showed: 1. On the given test conditions, the best content of each chemical composition in the formula of modification solution for making cerium conversion coating on the surface were: l.Ce(NO3)3:14g/L,KMnO4:1g/L,addictive Ce-1:0.3g/L;Main technology parameters were :pH=1.5~2.7;temperature:20°C;time:15~25 min.;2. Under the same test condition, the corrosion resistance of surface of the cerium conversion coating obtained in test modification solution was better than Alodine 1001 obtained from Bombardier Corporation of Canada, and can meet the repairing demands of Aircraft Envelope.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wen Zhu ◽  
Furui Chen ◽  
Youbin Luo ◽  
Zhijun Su ◽  
Wenfang Li ◽  
...  

In this study, a vanadium (V) and tannic acid-based composite conversion coating (VTACC) was prepared on 6063 aluminum alloy (AA6063) to increase its corrosion resistance. The surface morphology and compositions of the VTACCs were characterized using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the coatings was investigated by linear polarization and electrochemical impedance spectra (EIS). The self-healing ability of the coating was detected by SEM, EDS, and scanning vibrating electrode technique (SVET) measurements. The coating mainly consisted of metal oxides, including Al2O3, VO2, V2O3, and V2O5, and metal organic complexes (Al and V-complexes). The electrochemical measurement results indicated that the best corrosion resistance of VTACC was acquired when the treatment time was 12 min. Furthermore, because a new coating with vanadium rich oxide was developed on the scratch area, artificial scratch VTACC surfaces were repaired after several days of immersion in 3.5-wt% NaCl solution.


2010 ◽  
Vol 129-131 ◽  
pp. 819-823
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

Ti-W composite coating was made by chemical conversion method on aluminum alloy. By orthogonal experiment, the optimal coating-forming conditions were the concentration ratio of TiOSO4 and Na2WO4 was 0.3 g/L:0.3 g/L、KMnO4 1.0 g/L、NaF 1.0 g/L、reaction temperature 40°C、reaction time 2min. The morphology of the coating was observed by scanning electron microscopy (SEM). Coating composition and the microcosmic phase structure were characterized using energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) respectively. Electrochemical test was used to study the coatings corrosion resistance. The results indicated that the composite chemical conversion coating is a crystal structure material that composites with Al、Mn、W、Ti et al., its surface appears as a accumulation of fibroid spherical particles, the crystallinity of conversion coating is better than uncoated sample obviously. The corrosion potential of the coating is improved to -0.440V, they were both prove the corrosion resistance has improved.


Sign in / Sign up

Export Citation Format

Share Document