scholarly journals A review on thin films, conducting polymers as sensor devices

Author(s):  
E.L. Veera Prabakaran ◽  
K Senthil Vadivu ◽  
B Mouli Prasanth

Abstract Thin film sensors are used to monitor environmental conditions by measuring the physical parameters. By using thin film technology, the sensors are capable of conducting precise measurements. Moreover, the measurements are stable and dependable. Furthermore, inexpensive sensor devices can be produced. In this paper, thin film technology for the design and fabrication of sensors that are used in various applications is reviewed. Further, the applications of thin film sensors in the fields of biomedical, energy harvesting, optical, and corrosion applications are also presented. From the review, the future research needs and future perspectives are identified and discussed.

1995 ◽  
Vol 403 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsent ◽  
J. Rickman ◽  
M. Dahmstt

AbstractIt is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kesavan Devarayan ◽  
Padmavathi P. ◽  
Kopperundevi Sivakami Nagaraju

Purpose Development of thin film sensors with pH function for noninvasive real-time monitoring of spoilage of packed seafood such as fish, crab and shrimp are described in this study. It is also the purpose of this study to enhance the leaching resistance of the sensors by using a suitable strategy and to quantitatively correlate the sensor’s halochromism with the total volatile amine. Design/methodology/approach To prepare halochromic sensors with better leaching resistance, biocompatible materials such as starch, agar, polyvinyl alcohol and cellulose acetate along with a halochromic dye were used to prepare the thin film sensors. These thin films were evaluated for monitoring the spoilage of packed seafood at room temperature, 4°C and −2°C up to 30 days. The halochromic sensors were characterized using UV-visible and FT-IR spectroscopy. Findings CIELab analyses of the halochromism of the thin film sensors revealed that the color changes exhibited by the sensors in response to the spoilage of seafood are visually distinguishable. Further, the halochromic response of the thin films was directly proportional to the amount of total volatile base nitrogen that evolved from the packed seafood. Excellent leaching resistance was observed for the developed thin film sensors. The halochromic property of the sensors is reversible and thus the sensors are recyclable. Besides, the thin film sensors exhibited significant biodegradability. Originality/value This study provides insights for use of different biocompatible polymers for obtaining enhanced leaching resistance in halochromic sensors. Further, the color changes exhibited by the sensors are in line with the total volatile amines evolved from the packed seafood. These results highlight the importance of the developed halochromic thin film sensors for real-time monitoring of the spoilage of packed seafood.


Author(s):  
Chaoshu Zeng ◽  
Guiomar Rotllant ◽  
Luis Giménez ◽  
Nicholas Romano

The vast majority of crustaceans are aquatic, living in either marine or freshwater environments. Marine crustaceans—such as copepods, in particular—are ubiquitous in the oceans and perhaps the most numerous metazoans on Earth. Because crustaceans occur in all marine habitats, their larvae are exposed to highly diverse and sometimes variable environmental conditions, including extreme situations in which various environmental factors exert significant effects on larval growth and development. This chapter first describes the effects of food availability on crustacean larvae. Food paucity is a commonly occurring scenario in the wild, which can directly affect larval growth and development and, in severe cases, results in mortality. In the subsequent sections, we cover the effects of temperature and salinity—the two most prominent physical parameters in the aquatic environments—on growth and development of crustacean larvae. We then discuss the influence of other important physicochemical factors in aquatic environments on larval growth and development, including dissolved oxygen, light, ocean acidification, and pollutants. Finally, the last two sections of this chapter discuss synergistic effects of different environmental factors and suggest future research directions in this field.


2013 ◽  
Vol 311 ◽  
pp. 451-455
Author(s):  
Liang Wen Ji ◽  
Mei Li Tsai

This paper is based on theoretical methods to study the computer simulation and analysis of the growth of semiconductor thin films. First, according to the traditional theory of thin-film growth, the relationship between the growth morphology and the physical parameters are discussed. Then, fractal theory has been applied to improve the diffusion-limited aggregation (DLA) model. And the simulations of the two-dimensional and three-dimensional thin-film growth are proposed. A computer program of the simulation of the thin-film growth is developed with help of MATLAB. Finally, the results of the simulation of the thin-film growth have been analyzed by the fractal dimension and multifractal spectra. The results of this paper can be applied to the dynamic simulation of nanometer thin-film growth, and an effective simulation tool is to provide the semiconductor process.


Nanoscale ◽  
2019 ◽  
Vol 11 (32) ◽  
pp. 15374-15381 ◽  
Author(s):  
Geonhee Lee ◽  
Min Choi ◽  
Soo Sang Chae ◽  
Du Won Jeong ◽  
Won Jin Choi ◽  
...  

Nanoscale scratches were produced with mechanical abrasion to enhance the chemical sensitivity of thin-film-type semiconductor sensors; ZnO sensor devices with well-aligned arrays of scratches exhibited superior performance.


2017 ◽  
Vol 41 (20) ◽  
pp. 11807-11816 ◽  
Author(s):  
Rhushikesh Godbole ◽  
V. P. Godbole ◽  
P. S. Alegaonkar ◽  
Sunita Bhagwat

This study correlates thicknesses, morphology, electrical properties with gas-sensing capability of WO3 thin-film sensors which contributes to understanding of property-performance relationship.


2021 ◽  
Author(s):  
Aldo J.G. Zarbin

Thin film technology is pervasive for many fields with high impact in our daily lives, which makes processing materials such as thin films a very important subject in materials science...


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44547-44554 ◽  
Author(s):  
S. T. Navale ◽  
A. T. Mane ◽  
M. A. Chougule ◽  
N. M. Shinde ◽  
JunHo Kim ◽  
...  

We demonstrate the preparation of cadmium sulfide (CdS) thin films via a facile chemical bath deposition method.


2021 ◽  
Author(s):  
Edwin Acosta

Since its discovery in early times, thin films rapidly found industrial applications such as in decorative and optics purposes. With the evolution of thin film technology, supported by the development of vacuum technology and electric power facilities, the range of applications has increased at a level that nowadays almost every industrial sector make use of them to provide specific physical and chemical properties to the surface of bulk materials. The possibility to tailor the film properties through the variation of the microstructure via the deposition parameters adopted in a specific deposition technique has permitted their entrance from the simplest like protective coatings against wear and corrosion to the most technological advanced applications such as microelectronics and biomedicine, recently. In spite of such impressive progress, the connection among all steps of the thin film production, namely deposition parameters-morphology and properties, is not fully accurate. Among other reasons, the lack of characterization techniques suitable for probing films with thickness less than a single atomic layer, along with a lack of understanding of the physics have impeded the elaboration of sophisticated models for a precise prediction of film properties. Furthermore, there remain some difficulties related to the large scale production and a relative high cost for the deposition of advanced structures, i.e. quantum wells and wires. Once these barriers are overcome, thin film technology will become more competitive for advanced technological applications.


2021 ◽  
Vol 59 (5) ◽  
pp. 321-328
Author(s):  
Hansol Kim ◽  
Hyewon Gu ◽  
Minju Song ◽  
Choong-Heui Chung ◽  
Yong-Jun Oh ◽  
...  

Halide perovskite solar cells have been attracting tremendous attention as next-generation solar cell materials because of their excellent optical and electrical properties. Formamidinium lead tri-iodide (FAPbI3) exhibits the narrowest band gap among lead iodide perovskites and shows excellent thermal and chemical stability, also. However, the large-area coating of FAPbI3 needed for commercialization has not been successful because of the instability of the black phase of FAPbI3 at ambient temperature. This study presents a compositional engineering direction to control the polymorph of the FAPbI3 thin film for the shear coating processes, without halide mixing. By adopting a hot substrate above 100 oC, our shear coating process can produce the black phase FA-based halide perovskites without halide mixing. We carefully investigate the Cs-FA and MA-FA mixed lead iodide perovskites’ phase stability by combining the study with thin-film fabrication and ab initio calculations. Cs-FA mixing shows promising behaviors for stabilizing α-FAPbI3 (black phase) compared with MA-FA. Stable FA-rich perovskite films cannot be achieved via shear coating processes with MA-FA mixing. Ab initio calculations revealed that Cs-FA mixing is excellent for inhibiting phase decomposition and water incorporation. This study is the first report that FA-based halide perovskite thin films can be made with the shear coating process without MA-Br mixing. We reveal the origin of the stable film formation with Cs-FA mixing, and present future research directions for fabricating FA-based perovskite thin films using shear coating.


Sign in / Sign up

Export Citation Format

Share Document