scholarly journals Isolated Mammalian and Schizosaccharomyces pombeRan-binding Domains Rescue S. pombe sbp1 (RanBP1) Genomic Mutants

1999 ◽  
Vol 10 (7) ◽  
pp. 2175-2190 ◽  
Author(s):  
Isabel Novoa ◽  
Mark G. Rush ◽  
Peter D’Eustachio

Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein–mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function in vivo, we expressed exogenous RanBP1, sbp1p, and the RBD of each in mammalian cells, in wild-type fission yeast, and in yeast whose endogenous sbp1 gene was disrupted. Mammalian cells and wild-type yeast expressing moderate levels of each protein were viable and displayed normal nuclear protein import.sbp1 − yeast were inviable but could be rescued by all four exogenous proteins. Two RBDs of the mammalian nucleoporin RanBP2 also rescued sbp1 −yeast. In mammalian cells, wild-type yeast, and rescued mutant yeast, exogenous full-length RanBP1 and sbp1p localized predominantly to the cytosol, whereas exogenous RBDs localized predominantly to the cell nucleus. These results suggest that only the RBD of sbp1p is required for its function in fission yeast, and that this function may not require confinement of the RBD to the cytosol. The results also indicate that the polar amino-terminal portion of sbp1p mediates cytosolic localization of the protein in both yeast and mammalian cells.

1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092 ◽  
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2000 ◽  
Vol 151 (5) ◽  
pp. 1101-1112 ◽  
Author(s):  
Ursula Fleig ◽  
Sandra S. Salus ◽  
Inga Karig ◽  
Shelley Sazer

The microtubule cytoskeleton plays a pivotal role in cytoplasmic organization, cell division, and the correct transmission of genetic information. In a screen designed to identify fission yeast genes required for chromosome segregation, we identified a strain that carries a point mutation in the SpRan GTPase. Ran is an evolutionarily conserved eukaryotic GTPase that directly participates in nucleocytoplasmic transport and whose loss affects many biological processes. Recently a transport-independent effect of Ran on spindle formation in vitro was demonstrated, but the in vivo relevance of these findings was unclear. Here, we report the characterization of a Schizosaccharomyces pombe Ran GTPase partial loss of function mutant in which nucleocytoplasmic protein transport is normal, but the microtubule cytoskeleton is defective, resulting in chromosome missegregation and abnormal cell shape. These abnormalities are exacerbated by microtubule destabilizing drugs, by loss of the spindle checkpoint protein Mph1p, and by mutations in the spindle pole body component Cut11p, indicating that SpRan influences microtubule integrity. As the SpRan mutant phenotype can be partially suppressed by the presence of extra Mal3p, we suggest that SpRan plays a role in microtubule stability.


1990 ◽  
Vol 10 (6) ◽  
pp. 2801-2808 ◽  
Author(s):  
D T Mooney ◽  
D B Pilgrim ◽  
E T Young

Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 717-717
Author(s):  
Nithya Krishnan ◽  
Jeff R. Bailey ◽  
Victoria Summey-Harner ◽  
Claudio Brunstein ◽  
Catherine M. Verfaillie ◽  
...  

Abstract Bcr-Abl, the translocation product of the Philadelphia chromosome implicated in human chronic myelogenous leukemia (CML), is a kinase affecting hematopoietic stem cell (HSC) behavior with respect to proliferation, apoptosis, adhesion and migration. Rho GTPases, particularly the Rac subfamily, have been shown to regulate these same cell functions in normal HSC and also regulate gene expression in many mammalian cells. BCR contains a “GTPase-activating protein” domain and a guanine nucleotide exchange domain, the latter or which is preserved in p210 Bcr-Abl. Since HSC functions regulated by Bcr-Abl and Rac are similar, we studied the potential involvement of Rac activation in Bcr-Abl signaling cascade. Human CML samples demonstrate baseline activation of Rac proteins that is reversed by in vitro treatment with STI571. To study the specific involvement of Rac2, we used a gene targeted mouse model with Rac2 null bone marrow. Using retovirus-mediated gene transfer, we introduced p210 Bcr-Abl in the MSCV vector into wild-type or Rac2−/− HSC/P and studied the behavior of these cells in vitro and in vivo. Irradiated recipient mice injected with LDBM cells transduced with p210 developed a uniformly fatal myeloproliferative syndrome (Median survival: 45 days, N=12), while mice injected with p210 transduced Rac2−/− LDBM cells (N=12, 2 independent exp.) had 100% survival and no development of leukocytosis, splenomegaly or organ infiltration of hematopoietic cells. These data suggest that Rac GTPases are critical for the transformation of HSC by Bcr-Abl and provide an additional therapeutic target for intervention in CML. WILD TYPE Rac 2 −/− Empty Vector MSCV-p210 Empty vector MSCV-p210 *p < 0.01 vs WT-MIEG3, **p< 0.01 vs WT-p210 bcr-abl. Proliferation (CPM) Medium 562 ± 278 16,207± 1605* 819.7 ± 363 3,135.5 ± 498** SCF (100ng/ml) 856 ± 187 23,226 ± 2203* 853.7 ± 524 3,756.8 ± 207** Cytokines (SCF, GCSF, MGDF) 8011± 1412 42,711± 13393* 4833 ±1019 3,614.5 ± 1982** Migration (%) Fibronectin 7 ± 0.4 38 ± 1.9* 0.4 ± 0.0 0.8 ± 0.1** SDF-1α 30 ±2.8 13 ±1.1* 0.5 ± 0.0 0.6 ± 0.0** Adhesion (% ) Fibronectin 76± 2.9 40 ±3* 4 ±0.4 10 ±0.1 **


1991 ◽  
Vol 11 (6) ◽  
pp. 3247-3258 ◽  
Author(s):  
M Truss ◽  
G Chalepakis ◽  
E P Slater ◽  
S Mader ◽  
M Beato

Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation.


Author(s):  
Stacey J. Baker ◽  
Stephen C. Cosenza ◽  
Saikrishna Athuluri-Divakar ◽  
M.V. Ramana Reddy ◽  
Rodrigo Vasquez-Del Carpio ◽  
...  

SUMMARYRigosertib is a novel benzyl styryl sulfone that inhibits the growth of a wide variety of human tumor cells in vitro and in vivo and is currently in Phase III clinical trials. We recently provided structural and biochemical evidence to show that rigosertib acts as a RAS-mimetic by binding to Ras Binding Domains (RBDs) of the RAF and PI3K family proteins and disrupts their binding to RAS. In a recent study, Jost et al (2017) attributed the mechanism of action of rigosertib to microtubule-binding. In these studies, rigosertib was obtained from a commercial vendor. We have been unable to replicate the reported results with clinical grade rigosertib, and hence compared the purity of clinical grade and commercially sourced rigosertib. We find that the commercially sourced rigosertib contains approximately 5% ON01500, a potent inhibitor of tubulin polymerization. Clinical grade rigosertib, which is free of this impurity, does not exhibit tubulin binding activity. In vivo, cell lines that express mutant β-tubulin (TUBBL240F) were also reported to be resistant to the effects of rigosertib. However, our studies showed that both wild-type and TUBBL240F-expressing cells failed to proliferate in the presence of rigosertib at concentrations that are lethal to wild-type cells. Morphologically, we find that rigosertib, at lethal concentrations, induced a senescence-like phenotype in the small percentage of both wild-type and TUBBL240F-expressing cells that survive in the presence of rigosertib. Our results suggest that TUBBL240F expressing cells are more prone to undergo senescence in the presence of rigosertib as well as BI2536, an unrelated ATP-competitive pan-PLK inhibitor. The appearance of these senescent cells could be incorrectly scored as resistant cells in flow cytometric assays using short term cultures.


1997 ◽  
Vol 17 (10) ◽  
pp. 5679-5687 ◽  
Author(s):  
C P Chang ◽  
Y Jacobs ◽  
T Nakamura ◽  
N A Jenkins ◽  
N G Copeland ◽  
...  

The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.


2000 ◽  
Vol 74 (5) ◽  
pp. 2372-2382 ◽  
Author(s):  
Toni Cathomen ◽  
Delphine Collete ◽  
Matthew D. Weitzman

ABSTRACT The Rep78 and Rep68 proteins of adeno-associated virus (AAV) type 2 are involved in DNA replication, regulation of gene expression, and targeting site-specific integration. They bind to a specific Rep recognition sequence (RRS) found in both the viral inverted terminal repeats and the AAVS1 integration locus on human chromosome 19. Previous in vitro studies implied that an N-terminal segment of Rep is involved in DNA recognition, while additional domains might stabilize binding and mediate multimerization. In order to define the minimal requirements for Rep to recognize its target site in the human genome, we developed one-hybrid assays in which DNA-protein interactions are detected in vivo. Chimeric proteins consisting of the N terminus of Rep fused to different oligomerization motifs and a transcriptional activation domain were analyzed for oligomerization, DNA binding, and activation of reporter gene expression. Expression of reporter genes was driven from RRS motifs cloned upstream of minimal promoters and examined in mammalian cells from transfected plasmids and inSaccharomyces cerevisiae from a reporter cassette integrated into the yeast genome. Our results show for the first time that chimeric proteins containing the amino-terminal 244 residues of Rep are able to target the RRS in vitro and in vivo when incorporated into artificial multimers. These studies suggest that chimeric proteins may be used to harness the unique targeting feature of AAV for gene therapy applications.


Sign in / Sign up

Export Citation Format

Share Document