scholarly journals Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2.

1992 ◽  
Vol 3 (3) ◽  
pp. 349-362 ◽  
Author(s):  
E J Huang ◽  
K H Nocka ◽  
J Buck ◽  
P Besmer

The c-kit ligand, KL, and its receptor, the proto-oncogene c-kit are encoded, respectively, at the steel (Sl) and white spotting (W) loci of the mouse. Both Sl and W mutations affect cellular targets in melanogenesis, gametogenesis, and hematopoiesis during development and in adult life. Although identified as a soluble protein, the predicted amino acid sequence of KL indicates that it is an integral transmembrane protein. We have investigated the relationship between the soluble and the cell associated forms of KL and the regulation of their expression. We show that the soluble form of KL is generated by efficient proteolytic cleavage from a transmembrane precursor, KL-1. An alternatively spliced version of KL-1, KL-2, in which the major proteolytic cleavage site is removed by splicing, is shown to produce a soluble biologically active form of KL as well, although with somewhat diminished efficiency. The protein kinase C inducer phorbol 12-myristate 13-acetate and the calcium ionophore A23187 were shown to induce the cleavage of both KL-1 and KL-2 at similar rates, suggesting that this process can be regulated differentially. Furthermore, proteolytic processing of both the KL-1 and KL-2 transmembrane protein products was shown to occur on the cell surface. The relative abundance of KL-1 and KL-2 is controlled in a tissue-specific manner. Sld, a viable steel allele, is shown to encode a biologically active secreted mutant KL protein. These results indicate an important function for both the soluble and the cell associate form of KL. The respective roles of the soluble and cell associated forms of KL in the proliferative and migratory functions of c-kit are discussed.

2010 ◽  
Vol 30 (14) ◽  
pp. 3480-3492 ◽  
Author(s):  
Yuhui Wang ◽  
Ling Zhao ◽  
Cynthia Smas ◽  
Hei Sook Sul

ABSTRACT Pref-1/Dlk1 is made as an epidermal growth factor (EGF) repeat-containing transmembrane protein but is cleaved by tumor necrosis factor alpha converting enzyme (TACE) to generate a biologically active soluble form. Soluble Pref-1 inhibits adipocyte differentiation through the activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and the subsequent upregulation of Sox9 expression. However, others have implicated Notch in Pref-1 signaling and function. Here, we show that Pref-1 does not interact with, or require, Notch for its function. Instead, we show a direct interaction of Pref-1 and fibronectin via the Pref-1 juxtamembrane domain and fibronectin C-terminal domain. We also show that fibronectin is required for the Pref-1-mediated inhibition of adipocyte differentiation, the activation of ERK/MAPK, and the upregulation of Sox9. Furthermore, disrupting fibronectin binding to integrin by the addition of RGD peptides or by the knockdown of α5 integrin prevents the Pref-1 inhibition of adipocyte differentiation. Pref-1 activates the integrin downstream signaling molecules, FAK and Rac, and ERK activation by Pref-1 is blunted by the knockdown of Rac or by the forced expression of dominant-negative Rac. We conclude that, by interacting with fibronectin, Pref-1 activates integrin downstream signaling to activate MEK/ERK and to inhibit adipocyte differentiation.


2006 ◽  
Vol 27 (6) ◽  
pp. 2294-2308 ◽  
Author(s):  
Kyung-Ah Kim ◽  
Jung-Hyun Kim ◽  
Yuhui Wang ◽  
Hei Sook Sul

ABSTRACT Preadipocyte factor 1 (Pref-1) is found in preadipocytes but is absent in adipocytes. Pref-1 is made as a transmembrane protein but is cleaved to generate a biologically active soluble form. Although Pref-1 inhibition of adipogenesis has been well studied in vitro and in vivo, the signaling pathway for Pref-1 is not known. Here, by using purified soluble Pref-1 in Pref-1 null mouse embryo fibroblasts (MEF), we show that Pref-1 increases MEK/extracellular signal-regulated kinase (ERK) phosphorylation in a time- and dose-dependent manner. Compared to wild-type MEF, differentiation of Pref-1 null MEF into adipocytes is enhanced, as judged by lipid accumulation and adipocyte marker expression. Both wild-type and Pref-1 null MEF show a transient burst of ERK phosphorylation upon addition of adipogenic agents. Wild-type MEF show a significant, albeit lower, second increase in ERK phosphorylation peaking at day 2. This ERK phosphorylation, corresponding to Pref-1 abundance, is absent during differentiation of Pref-1 null MEF. Prevention of this second increase in ERK1/2 phosphorylation in wild-type MEF by the MEK inhibitor PD98059 or by transient depletion of ERK1/2 via small interfering RNA-enhanced adipocyte differentiation. Furthermore, treatment of Pref-1 null MEF with Pref-1 restores this ERK phosphorylation, resulting in inhibition of adipocyte differentiation primarily by preventing peroxisome proliferator-activated receptor γ2 induction. However, in the presence of PD98059 or depletion of ERK1/2, exogenous Pref-1 cannot inhibit adipocyte differentiation in Pref-1 null MEF. We conclude that Pref-1 activates MEK/ERK signaling, which is required for Pref-1 inhibition of adipogenesis.


1995 ◽  
Vol 15 (8) ◽  
pp. 4616-4622 ◽  
Author(s):  
R S Bradley ◽  
A M Brown

The proto-oncogene Wnt-1 plays an essential role in fetal brain development and causes hyperplasia and tumorigenesis when activated ectopically in the mouse mammary gland. When expressed in certain mammary epithelial cell lines, the gene causes morphological transformation and excess cell proliferation at confluence. Like other members of the mammalian Wnt family, Wnt-1 encodes secretory glycoproteins which have been detected in association with the extracellular matrix or cell surface but which have not previously been found in a soluble or biologically active form. We show here that conditioned medium harvested from a mammary cell line expressing Wnt-1 contains soluble Wnt-1 protein and induces mitogenesis and transformation of mammary target cells. By immunodepletion of medium containing epitope-tagged Wnt-1, we show that at least 60% of this activity is specifically dependent on Wnt-1 protein. These results provide the first demonstration that a mammalian Wnt protein can act as a diffusible extracellular signaling factor.


1978 ◽  
Vol 176 (1) ◽  
pp. 119-127 ◽  
Author(s):  
T Bartfai ◽  
X O Breakefield ◽  
P Greengard

The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.


2008 ◽  
Vol 2 ◽  
pp. CMO.S461 ◽  
Author(s):  
Chandra Shekhar Boosani ◽  
Akulapalli Sudhakar

Non-collagenous α3 chain of type IV collagen or α3(IV)NC1, a 28 kDa C-terminal domain of collagen type IV is a specific inhibitor of endothelial cell translation and angiogenesis. In the present study we have cloned and expressed mouse α3(IV)NC1 in baculovirus system. The recombinant protein was expressed in soluble form and tested for several of its biological functions. We identified that this recombinant mouse α3(IV)NC1 specifically inhibited proliferation, translation and tube formation of endothelial cells. Also, we show that α3(IV)NC1 treatment results in apoptosis specifically in proliferating endothelial cells. In addition we report for the first time that mouse α3(IV)NC1 inhibits migration and p38 MAPK phosphorylation in addition to inhibition of FAK/Akt/mTOR/4E-BP1 signaling. In mice α3(IV)NC1 treatment reduced tumor growth and CD-31 positive endothelial vasculature in tumors. Collectively, our data demonstrate the expression of biologically active form of mouse α3(IV)NC1 in Sf-9 cells and provide important mechanistic insights on α3(IV)NC1 antiangiogenic actions in endothelial cells.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Alexandra Rak ◽  
Alexander Trofimov ◽  
Vasily Stefanov ◽  
Alexander Ischenko

Anti-mullerian hormone (AMH) is a glycoprotein of the TGFβ cytokine superfamily that regulates the development of the mammalian reproductive system, as well as the functioning of mature gonads. Recombinant AMH (rAMH) is also able to induce apoptosis of malignant cells bearing AMH type II receptors (MISRII) on the surface. Development of rAMH-based anticancer drugs is hampered by the lack of accurate information about the tissues where the AMH active form is generated and about the enzyme that activates the hormone by specific proteolysis. According to one hypothesis, the proteolytic processing of the hormone is autocatalytic. The goal of this work was to investigate the proteolytic activity of rAMH and its biologically active form — C-terminal AMH fragment (C-AMH). We showed that two forms of the hormone possess both autoproteolytic activity and the ability to influence the structure of other proteins. A full-length molecule of the hormone, as well as C-AMH, also forms complexes with aprotinin, an inhibitor of trypsin-like serine proteases. We determined that aprotinin competes for binding to C-AMH with antibodies blocking C-AMH interaction with MISRII. The obtained data suggest that AMH has protease properties and that the site of specific AMH autoproteolysis is involved in the interaction of the hormone with a specific receptor.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


1992 ◽  
Vol 67 (01) ◽  
pp. 154-160 ◽  
Author(s):  
P Meulien ◽  
M Nishino ◽  
C Mazurier ◽  
K Dott ◽  
G Piétu ◽  
...  

SummaryThe cloning of the cDNA encoding von Willebrand factor (vWF) has revealed that it is synthesized as a large precursor (pre-pro-vWF) molecule and it is now clear that the prosequence or vWAgll is responsible for the intracellular multimerization of vWF. We have cloned the complete vWF cDNA and expressed it using a recombinant vaccinia virus as vector. We have characterized the structure and function of the recombinant vWF (rvWF) secreted from five different cell types: baby hamster kidney (BHK), Chinese hamster ovary (CHO), human fibroblasts (143B), mouse fibroblasts (L) and primary embryonic chicken cells. Forty-eight hours after infection, the quantity of vWF antigen found in the cell supernatant varied from 3 to 12 U/dl depending on the cell type. By SDS-agarose gel electrophoresis, the percentage of high molecular weight forms of vWF varied from 39 to 49% relative to normal plasma for BHK, CHO, 143B and chicken cells but was less than 10% for L cells. In all cell types, the two anodic subbands of each multimer were missing. The two cathodic subbands were easily detected only in BHK and L cells. By SDS-PAGE of reduced samples, pro-vWF was present in similar quantity to the fully processed vWF subunit in L cells, present in moderate amounts in BHK and CHO and in very low amounts in 143B and chicken cells. rvWF from all cells bound to collagen and to platelets in the presence of ristocetin, the latter showing a high correlation between binding efficiency and degree of multimerization. rvWF from all cells was also shown to bind to purified FVIII and in this case binding appeared to be independent of the degree of multimerization. We conclude that whereas vWF is naturally synthesized only by endothelial cells and megakaryocytes, it can be expressed in a biologically active form from various other cell types.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


2016 ◽  
pp. 37-40
Author(s):  
S.I. Zhuk ◽  
◽  
K.K. Bondarenko ◽  

Most recent studies show the impact of violations in the metabolism of folate and metin period in the pathogenesis of neural tube defects (NTD) of the fetus. Metafolin has a number of advantages, which primarily includes direct intake of substances in biologically active form and the optimum effect, even in the case when the patient homozygote and/or heterozygote genotype 677С T polymorphism in MTHFR. With the aim of prevention and treatment of various pathological conditions related to folate deficiency during pregnancy, it is advisable to apply vitamin-mineral complexes, containing metafolin - active form of folate with high bioavailability. Key words: MTHFR, metafolin, folic acid, pregnancy.


Sign in / Sign up

Export Citation Format

Share Document