scholarly journals A pharmacological cocktail for arresting actin dynamics in living cells

2011 ◽  
Vol 22 (21) ◽  
pp. 3986-3994 ◽  
Author(s):  
Grace E. Peng ◽  
Sarah R. Wilson ◽  
Orion D. Weiner

The actin cytoskeleton is regulated by factors that influence polymer assembly, disassembly, and network rearrangement. Drugs that inhibit these events have been used to test the role of actin dynamics in a wide range of cellular processes. Previous methods of arresting actin rearrangements take minutes to act and work well in some contexts, but can lead to significant actin reorganization in cells with rapid actin dynamics, such as neutrophils. In this paper, we report a pharmacological cocktail that not only arrests actin dynamics but also preserves the structure of the existing actin network in neutrophil-like HL-60 cells, human fibrosarcoma HT1080 cells, and mouse NIH 3T3 fibroblast cells. Our cocktail induces an arrest of actin dynamics that initiates within seconds and persists for longer than 10 min, during which time cells maintain their responsivity to external stimuli. With this cocktail, we demonstrate that actin dynamics, and not simply morphological polarity or actin accumulation at the leading edge, are required for the spatial persistence of Rac activation in HL-60 cells. Our drug combination preserves the structure of the existing cytoskeleton while blocking actin assembly, disassembly, and rearrangement, and should prove useful for investigating the role of actin dynamics in a wide range of cellular signaling contexts.

2005 ◽  
Vol 16 (7) ◽  
pp. 3107-3116 ◽  
Author(s):  
Anindya Ghosh-Roy ◽  
Bela S. Desai ◽  
Krishanu Ray

Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.


2021 ◽  
Vol 22 (4) ◽  
pp. 1991
Author(s):  
Jimok Yoon ◽  
Heng Wu ◽  
Ruei-Jiun Hung ◽  
Jonathan R. Terman

To change their behaviors, cells require actin proteins to assemble together into long polymers/filaments—and so a critical goal is to understand the factors that control this actin filament (F-actin) assembly and stability. We have identified a family of unusual actin regulators, the MICALs, which are flavoprotein monooxygenase/hydroxylase enzymes that associate with flavin adenine dinucleotide (FAD) and use the co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH) in Redox reactions. F-actin is a specific substrate for these MICAL Redox enzymes, which oxidize specific amino acids within actin to destabilize actin filaments. Furthermore, this MICAL-catalyzed reaction is reversed by another family of Redox enzymes (SelR/MsrB enzymes)—thereby revealing a reversible Redox signaling process and biochemical mechanism regulating actin dynamics. Interestingly, in addition to the MICALs’ Redox enzymatic portion through which MICALs covalently modify and affect actin, MICALs have multiple other domains. Less is known about the roles of these other MICAL domains. Here we provide approaches for obtaining high levels of recombinant protein for the Redox only portion of Mical and demonstrate its catalytic and F-actin disassembly activity. These results provide a ground state for future work aimed at defining the role of the other domains of Mical — including characterizing their effects on Mical’s Redox enzymatic and F-actin disassembly activity.


Reproduction ◽  
2018 ◽  
Vol 155 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Da Li ◽  
Yue You ◽  
Fang-Fang Bi ◽  
Tie-Ning Zhang ◽  
Jiao Jiao ◽  
...  

The importance of autophagy in polycystic ovary syndrome (PCOS)-related metabolic disorders is increasingly being recognized, but few studies have investigated the role of autophagy in PCOS. Here, transmission electron microscopy demonstrated that autophagy was enhanced in the ovarian tissue from both humans and rats with PCOS. Consistent with this, ovarian granulosa cells from PCOS rats showed increases in the autophagy marker protein light chain 3B (LC3B), whereas levels of the autophagy substrate SQSTM1/p62 were decreased. In addition, the ratio of LC3-II/LC3-I was markedly elevated in human PCOS ovarian tissue compared with normal ovarian tissue. Real-time PCR arrays indicated that 7 and 34 autophagy-related genes were down- and up-regulated in human PCOS , Signal-Net, and regression analysis suggested that there are a wide range of interactions among these 41 genes, and a potential network based on EGFR, ERBB2, FOXO1, MAPK1, NFKB1, IGF1, TP53 and MAPK9 may be responsible for autophagy activation in PCOS. Systematic functional analysis of 41 differential autophagy-related genes indicated that these genes are highly involved in specific cellular processes such as response to stress and stimulus, and are linked to four significant pathways, including the insulin, ERBB, mTOR signaling pathways and protein processing in the endoplasmic reticulum. This study provides evidence for a potential role of autophagy disorders in PCOS in which autophagy may be an important molecular event in the pathogenesis of PCOS.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Ponlapat Rojnuckarin ◽  
Kenneth Kaushansky

Abstract With the recent cloning and characterization of thrombopoietin, appreciation of the molecular events surrounding megakaryocyte (MK) development is growing. However, the final stages of platelet formation are less well understood. Platelet production occurs after the formation of MK proplatelet processes. In a study to explore the molecular mechanisms underlying this process, mature MKs isolated from suspension murine bone marrow cell cultures were induced to form proplatelets by exposure to plasma, and the role of various cell-signaling pathways was assessed. The results showed that (1) bis-indolylmaleimide I, which blocks protein kinase C (PKC) activation; (2) down-modulation of conventional or novel classes of PKC by phorbol myristate acetate; and (3) ribozymes specific for PKCα each inhibited proplatelet formation. Inhibition of several MAP kinases, PI3 kinase, or protein kinase A failed to affect MK proplatelet formation. To gain further insights into the function of PKCα in proplatelet formation, its subcellular localization was investigated. In cultures containing active proplatelet formation, cytoplasmic polymerized actin was highly aggregated, its subcellular distribution was reorganized, and PKCα colocalized with the cellular actin aggregates. A number of MK manipulations, including blockade of integrin signaling with a disintegrin or inhibition of actin polymerization with cytochalasin D, interrupted actin reorganization, PKC relocalization, and proplatelet formation. These findings suggest an important role for PKCα in proplatelet development and suggest that it acts by altering actin dynamics in proplatelet-forming MKs. Identification of the upstream and downstream pathways involved in proplatelet formation should provide greater insights into thrombopoiesis, potentially allowing pharmacologic manipulation of the process.


2011 ◽  
Vol 439 (3) ◽  
pp. 349-378 ◽  
Author(s):  
Anthony J. Morgan ◽  
Frances M. Platt ◽  
Emyr Lloyd-Evans ◽  
Antony Galione

Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.


2014 ◽  
Vol 306 (8) ◽  
pp. C753-C761 ◽  
Author(s):  
Rachel A. Cleary ◽  
Ruping Wang ◽  
Omar Waqar ◽  
Harold A. Singer ◽  
Dale D. Tang

c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4641-4641
Author(s):  
Hidenori Hattori ◽  
Kulandayan K Subramanian ◽  
Hongbo R. Luo

Abstract Precise spatial and temporal control of actin polymerization and depolymerization is essential for mediating various cellular processes such as migration, phagocytosis, vesicle trafficking and adhesion. In this study, we used a small-molecule functional screening approach to identify novel regulators of actin dynamics during neutrophil migration. Here we show that NADPH-oxidase dependent Reactive Oxygen Species act as negative regulators of actin polymerization. Neutrophils with pharmacologically inhibited oxidase or isolated from Chronic Granulomatous Disease (CGD) patient and mice displayed enhanced F-actin polymerization, multiple pseudopods formation and impaired chemotaxis. ROS localized to pseudopodia and inhibited actin polymerization by driving actin glutathionylation at the leading edge of migrating cells. Consistent with these in vitro results, adoptively transferred CGD murine neutrophils also showed impaired in vivo recruitment to sites of inflammation. Together, these results present a novel physiological role for ROS in regulation of action polymerization and shed new light on the pathogenesis of CGD.


2019 ◽  
Vol 7 (3) ◽  
pp. 116-128
Author(s):  
Jianyang Liu ◽  
Jialin He ◽  
Yan Huang ◽  
Han Xiao ◽  
Zheng Jiang ◽  
...  

The central role of the Golgi apparatus in critical cellular processes such as the transport, processing, and sorting of proteins and lipids has placed it at the forefront of cell science. Golgi apparatus dysfunction caused by primary defects within the Golgi or pharmacological and oxidative stress has been implicated in a wide range of neurodegenerative diseases. In addition to participating in disease progression, the Golgi apparatus plays pivotal roles in angiogenesis, neurogenesis, and synaptogenesis, thereby promoting neurological recovery. In this review, we focus on the functions of the Golgi apparatus and its mediated events during neurorestoration.


2018 ◽  
Author(s):  
Amélie Robert ◽  
Peirun Tian ◽  
Stephen A. Adam ◽  
Robert D. Goldman ◽  
Vladimir I. Gelfand

ABSTRACTIntermediate filaments (IFs) are a major component of the cytoskeleton that regulates a wide range of physiological properties in eukaryotic cells. In motile cells, the IF network has to adapt to constant changes of cell shape and tension. In this study, we used two cell lines that express vimentin and keratins 8/18 to study the dynamic behavior of these IFs. We demonstrated that both IF types undergo extensive transport along microtubules. This was an unexpected result as keratin filament remodeling has been described to depend on actin dynamics. We established the role of kinesin-1 in vimentin and keratin IF transport by knocking out KIF5B, the ubiquitous isoform of kinesin-1. Futhermore, we demonstrated that unlike typical membrane cargoes, transport of both types of IFs does not involve kinesin light chains, but requires the presence of the same region of the kinesin-1 tail, suggesting a unified mechanism of IF transport.


2020 ◽  
Vol 6 (45) ◽  
pp. eabb1307 ◽  
Author(s):  
Fengfeng Niu ◽  
Kang Sun ◽  
Wenjie Wei ◽  
Cong Yu ◽  
Zhiyi Wei

Motor-mediated intracellular trafficking requires motors to position cargoes at proper locations. Myosin Va (MyoVa), an actin-based motor, is a classic model for studying cargo transport. However, the molecular basis underlying cargo unloading in MyoVa-mediated transport has remained enigmatic. We have identified MICAL1, an F-actin disassembly regulator, as a binding partner of MyoVa and shown that MICAL1-MyoVa interaction is critical for localization of MyoVa at the midbody. By binding to MICAL1, MyoVa-mediated transport is terminated, resulting in vesicle unloading at the midbody for efficient cytokinesis. The MyoVa/MICAL1 complex structure reveals that MICAL1 and F-actin assembly factors, Spires, share an overlapped binding surface on MyoVa, suggesting a regulatory role of F-actin dynamics in cargo unloading. Down-regulating F-actin disassembly by a MICAL1 mutant significantly reduces MyoVa and vesicles accumulating at the midbody. Collectively, our findings demonstrate that MyoVa binds to MICAL1 at the midbody destination and triggers F-actin disassembly to unload the vesicle cargo.


Sign in / Sign up

Export Citation Format

Share Document