scholarly journals Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes

2011 ◽  
Vol 22 (18) ◽  
pp. 3277-3288 ◽  
Author(s):  
Xingqian Zhang ◽  
Shu-Bing Qian

Protein misfolding is a common event in living cells. Molecular chaperones not only assist protein folding; they also facilitate the degradation of misfolded polypeptides. When the intracellular degradative capacity is exceeded, juxtanuclear aggresomes are formed to sequester misfolded proteins. Despite the well-established role of chaperones in both protein folding and degradation, how chaperones regulate the aggregation process remains controversial. Here we investigate the molecular mechanisms underlying aggresome formation in mammalian cells. Analysis of the chaperone requirements for the fate of misfolded proteins reveals an unexpected role of heat shock protein 70 (Hsp70) in promoting aggresome formation. This proaggregation function of Hsp70 relies on the interaction with the cochaperone ubiquitin ligase carboxyl terminal of Hsp70/Hsp90 interacting protein (CHIP). Disrupting Hsp70–CHIP interaction prevents the aggresome formation, whereas a dominant-negative CHIP mutant sensitizes the aggregation of misfolded protein. This accelerated aggresome formation also relies on the stress-induced cochaperone Bcl2-associated athanogene 3. Our results indicate that a hierarchy of cochaperone interaction controls different aspects of the intracellular protein triage decision, extending the function of Hsp70 from folding and degradation to aggregation.

2019 ◽  
Vol 81 (1) ◽  
pp. 453-482 ◽  
Author(s):  
Diane M. Ward ◽  
Suzanne M. Cloonan

Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.


2010 ◽  
Vol 299 (5) ◽  
pp. C1015-C1027 ◽  
Author(s):  
Corina M. Balut ◽  
Yajuan Gao ◽  
Sandra A. Murray ◽  
Patrick H. Thibodeau ◽  
Daniel C. Devor

The number of intermediate-conductance, Ca2+-activated K+ channels (KCa3.1) present at the plasma membrane is deterministic in any physiological response. However, the mechanisms by which KCa3.1 channels are removed from the plasma membrane and targeted for degradation are poorly understood. Recently, we demonstrated that KCa3.1 is rapidly internalized from the plasma membrane, having a short half-life in both human embryonic kidney cells (HEK293) and human microvascular endothelial cells (HMEC-1). In this study, we investigate the molecular mechanisms controlling the degradation of KCa3.1 heterologously expressed in HEK and HMEC-1 cells. Using immunofluorescence and electron microscopy, as well as quantitative biochemical analysis, we demonstrate that membrane KCa3.1 is targeted to the lysosomes for degradation. Furthermore, we demonstrate that either overexpressing a dominant negative Rab7 or short interfering RNA-mediated knockdown of Rab7 results in a significant inhibition of channel degradation rate. Coimmunoprecipitation confirmed a close association between Rab7 and KCa3.1. On the basis of these findings, we assessed the role of the ESCRT machinery in the degradation of heterologously expressed KCa3.1, including TSG101 [endosomal sorting complex required for transport (ESCRT)-I] and CHMP4 (ESCRT-III) as well as VPS4, a protein involved in the disassembly of the ESCRT machinery. We demonstrate that TSG101 is closely associated with KCa3.1 via coimmunoprecipitation and that a dominant negative TSG101 inhibits KCa3.1 degradation. In addition, both dominant negative CHMP4 and VPS4 significantly decrease the rate of membrane KCa3.1 degradation, compared with wild-type controls. These results are the first to demonstrate that plasma membrane-associated KCa3.1 is targeted for lysosomal degradation via a Rab7 and ESCRT-dependent pathway.


2010 ◽  
Vol 427 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Yatender Kumar ◽  
Vegesna Radha ◽  
Ghanshyam Swarup

Activation of initiator caspases is dependent on interacting proteins, and Ipaf [ICE (interleukin-1β-converting enzyme)-protease activating factor] {NLRC4 [NLR (Nod-like receptor) family CARD (caspase activation and recruitment domain)-containing 4]} an inflammasome component, is involved in caspase 1 activation and apoptosis. Investigating the mechanisms of Ipaf activation, we found that the C-terminal LRR (leucine-rich repeat) domain of Ipaf, through intramolecular interaction, negatively regulates its apoptosis-inducing function. In A549 lung carcinoma cells, expression of Ac-Ipaf (LRR-domain-deleted Ipaf) induced cell death that was dependent on caspase 8, but not on caspase 1. A yeast two-hybrid screen using Ac-Ipaf as bait identified human Sug1 (suppressor of gal 1), a component of the 26S proteasome, as an interacting protein. In mammalian cells Sug1 interacts and co-localizes with Ipaf. Sug1 binds to amino acids 91–253 of Ipaf, which is also the region that the LRR domain binds to. It potentiates cell death induced by Ipaf and Ac-Ipaf, and co-expression of Sug1 and Ipaf induces caspase-8-dependent cell death. Cellular complexes formed by Ipaf and Sug1 contain caspase 8. Expression of Ac-Ipaf or co-expression of Sug1 with Ipaf results in the formation of cytoplasmic aggregates and caspase 8 activation. Sug1 co-expression enabled modification of Ipaf by ubiquitination. Tagging ubiquitin molecules to Ipaf led to aggregate formation, enhanced caspase 8 interaction and activation, resulting in induction of cell death. Using RNAi (RNA interference) and dominant-negative approaches, we have shown that cell death induced by Ac-Ipaf expression or by treatment with TNF-α (tumour necrosis factor α) or doxorubicin is dependent on Sug1. Our results suggest a role for ubiquitination of Ipaf that is enabled by its interaction with Sug1, leading to caspase 8 activation and cell death.


2008 ◽  
Vol 181 (3) ◽  
pp. 497-510 ◽  
Author(s):  
Taichi Hara ◽  
Akito Takamura ◽  
Chieko Kishi ◽  
Shun-ichiro Iemura ◽  
Tohru Natsume ◽  
...  

Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51–like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.


2014 ◽  
Vol 369 (1650) ◽  
pp. 20130462 ◽  
Author(s):  
Rosa M. Rios

A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis -face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.


2005 ◽  
Vol 25 (5) ◽  
pp. 1971-1979 ◽  
Author(s):  
Kenji Hata ◽  
Riko Nishimura ◽  
Mio Ueda ◽  
Fumiyo Ikeda ◽  
Takuma Matsubara ◽  
...  

ABSTRACT Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein β (C/EBPβ), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation. We found that C/EBPβ, which is induced along with osteoblast differentiation, promotes the differentiation of mesenchymal cells into an osteoblast lineage in cooperation with Runx2, an essential transcription factor for osteogenesis. Surprisingly, an isoform of C/EBPβ, liver-enriched inhibitory protein (LIP), which lacks the transcriptional activation domain, stimulates transcriptional activity and the osteogenic action of Runx2, although LIP inhibits adipogenesis in a dominant-negative fashion. Furthermore, LIP physically associates with Runx2 and binds to the C/EBP binding element present in the osteocalcin gene promoter. These data indicate that LIP functions as a coactivator for Runx2 and preferentially promotes the osteoblast differentiation of mesenchymal cells. Thus, identification of a novel role of the C/EBPβ isoform provides insight into the molecular basis of the regulation of osteoblast and adipocyte commitment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4256-4256
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 4256 Clathrin assembly lymphoid myeloid leukemia protein (CALM, also known as PICALM) is ubiquitously expressed in mammalian cells and implicated in clathrin dependent endocytosis (CDE). The CALM gene is the target of the t(10;11)(p13;q14-21) translocation, which is rare, but recurrently observed mutation in multiple types of acute leukemia. While the resultant CALM/AF10 fusion gene could act as an oncogene in vitro and in vivo in animal models, molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. Since CDE is implicated in the regulation of growth factor/cytokine signals, we hypothesized that the CALM/AF10 fusion oncoprotein could affect normal Calm function, leading to leukemogenesis. To determine the role of CALM and CDE in normal hematopoiesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/F Mx1Cre+) Calm knockout mutants. While we didn't observe a gross defect in the heterozygous mutant (Calm+/−), homozygous deletion of the Calm gene (Calm-/-) resulted in late embryonic lethality. Total numbers of fetal liver (FL) cells were significantly reduced in Calm-/-embryos compared to that of control due to inefficient erythropoiesis. Proportions of mature erythroblasts (CD71-Ter119+) in FL were significantly reduced in the absence of the Calm gene. Furthermore, Calm deficient Megakaryocyte-Erythroid Progenitors (MEPs) gave rise to less CFU-E colonies when seeded in methyl cellulose plates, suggesting that Calm is required for terminal erythroid differentiation in a cell autonomous manner. To determine the role of Calm in adult hematopoiesis, we analyzed peripheral blood (PB), bone marrow (BM) and spleen of CalmF/F Mx1Cre+ mice after pIpC injection. CalmF/F Mx1Cre+ mice demonstrated hypochromic anemia, T-lymphocytopenia and thrombocytosis one month after pIpC injection. Levels of plasma transferrin and ferritin were intact in CalmF/F Mx1Cre+ mice, while plasma iron levels were increased, indicating that iron uptake is impaired in Calm deficient erythroblasts. We observed significant reduction of mature erythroblasts and erythrocytes in both BM and spleen with concomitant increase of immature erythroblasts (CD71+Ter119+) in CalmF/F Mx1Cre+ mice. The increased population mainly consists of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts, and Benzidine staining of PB and splenic erythroblasts revealed reduced hemoglobinization in Calm deficient erythroblasts. To examine the global changes in transcriptome of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts with or without the Calm gene, we compared mRNA expression profile by gene chip microarray analysis. Over 400 genes, including genes associated with iron metabolism and CDE pathway, were up- or down-regulated more than 1.5-fold in Calm deficient polychromatophilic erythroblasts as compared to control. Genes Set Enrichment Analysis (GSEA) revealed that multiple metabolic pathways were downregulated in Calm deficient polychromatophilic erythroblasts. Calm deficient CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts demonstrated a defect in cellular proliferation revealed by cell cycle analysis. Transferrin receptor 1 (TFR1, CD71) is highly expressed in rapidly dividing cells and erythroblasts, and uptake of iron-bound transferrin through TFR1 is the main pathway of iron intake to erythroid precursors. Since CDE is implicated in TFR1 endocytosis, we next examined surface expression levels of CD71 in Calm deficient erythroid progenitors and erythroblasts. While CD71 is normally expressed at low level in early stage of megakaryo/erythroid progenitors and highly expressed in CFU-E through polychromatophilic erythroblasts, its expression was dramatically up-regulated throughout the erythroid development in CalmF/F Mx1Cre+ mice. Up-regulation of surface CD71 expression was also evident in K562 erythroid leukemia cell lines upon ShRNA-mediated CALM knockdown. Taken together, our data indicate that CALM plays an essential role in terminal erythroid differentiation via regulating TFR1 endocytosis. Since iron is required for both erythroblast proliferation and hemoglobinization, Calm deficiency significantly impacts erythroid development at multiple levels. Disclosures: Naoe: Chugai Pharm. Co.: Research Funding; Zenyaku-Kogyo Co.: Research Funding; Kyowa-Kirin Co.: Research Funding; Dainippon-Sumitomo Pharm. Co.: Research Funding; Novartis Pharm. Co.: Research Funding; Janssen Pharm. Co.: Research Funding.


2008 ◽  
Vol 22 (10) ◽  
pp. 2260-2267 ◽  
Author(s):  
Partha Chakrabarti ◽  
Takatoshi Anno ◽  
Brendan D. Manning ◽  
Zhijun Luo ◽  
Konstantin V. Kandror

Abstract Leptin production by adipose cells in vivo is increased after feeding and decreased by food deprivation. However, molecular mechanisms that control leptin expression in response to food intake remain unknown. Here, we test the hypothesis that leptin expression in adipose cells is regulated by nutrient- and insulin-sensitive mammalian target of rapamycin complex 1 (mTORC1)-mediated pathway. The activity of mTORC1 in 3T3-L1 adipocytes was up-regulated by stable expression of either constitutively active Rheb or dominant-negative AMP-activated protein kinase. In both cases, expression of endogenous leptin was significantly elevated at the level of translation. To investigate the role of leptin 5′-untranslated region (UTR) in the regulation of protein expression, we created bicistronic reporter constructs with and without the 5′-UTR. We found that the presence of leptin 5′-UTR renders mRNA resistant to regulation by mTORC1. It appears, therefore, that mTORC1 controls translation of leptin mRNA via a novel mechanism that does not require the presence of either the 5′-terminal oligopyrimidine tract or the 5′-UTR.


2002 ◽  
Vol 13 (12) ◽  
pp. 4256-4265 ◽  
Author(s):  
Uriel Katz ◽  
Serge Ankri ◽  
Tamara Stolarsky ◽  
Yael Nuchamowitz ◽  
David Mirelman

The 260-kDa heterodimeric Gal/GalNAc-specific Lectin (Gal-lectin) of Entamoeba histolytica dissociates under reducing conditions into a heavy (hgl, 170 kDa) and a light subunit (lgl, 35 kDa). We have previously shown that inhibition of expression of the 35-kDa subunit by antisense RNA causes a decrease in virulence. To further understand the role of the light subunit of the Gal-lectin in pathogenesis, amoebae were transfected with plasmids encoding intact, mutated, and truncated forms of the light subunit lgl1 gene. A transfectant in which the 55 N-terminal amino acids of the lgl were removed, overproduced an N-truncated lgl protein (32 kDa), which replaced most of the native 35-kDa lgl in the formation of the Gal-lectin heterodimeric complex and exerted a dominant negative effect. Amoebae transfected with this construct showed a significant decrease in their ability to adhere to and kill mammalian cells as well as in their capacity to form rosettes with and to phagocytose erythrocytes. In addition, immunofluorescence confocal microscopy of this transfectant with anti–Gal-lectin antibodies showed an impaired ability to cap. These results indicate that the light subunit has a role in enabling the clustering of Gal-lectin complexes and that its N-truncation affects this function, which is required for virulence.


2004 ◽  
Vol 287 (5) ◽  
pp. L970-L980 ◽  
Author(s):  
Irina A. Kolosova ◽  
Shwu-Fan Ma ◽  
Djanybek M. Adyshev ◽  
Peyi Wang ◽  
Motoi Ohba ◽  
...  

We have previously shown that myosin light chain (MLC) phosphatase (MLCP) is critically involved in the regulation of agonist-mediated endothelial permeability and cytoskeletal organization (Verin AD, Patterson CE, Day MA, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 269: L99–L108, 1995). The molecular mechanisms of endothelial MLCP regulation, however, are not completely understood. In this study we found that, similar to smooth muscle, lung microvascular endothelial cells expressed specific endogenous inhibitor of MLCP, CPI-17. To elucidate the role of CPI-17 in the regulation of endothelial cytoskeleton, full-length CPI-17 plasmid was transiently transfected into pulmonary artery endothelial cells, where the background of endogenous protein is low. CPI-17 had no effect on cytoskeleton under nonstimulating conditions. However, stimulation of transfected cells with direct PKC activator PMA caused a dramatic increase in F-actin stress fibers, focal adhesions, and MLC phosphorylation compared with untransfected cells. Inflammatory agonist histamine and, to a much lesser extent, thrombin were capable of activating CPI-17. Histamine caused stronger CPI-17 phosphorylation than thrombin. Inhibitory analysis revealed that PKC more significantly contributes to agonist-induced CPI-17 phosphorylation than Rho-kinase. Dominant-negative PKC-α abolished the effect of CPI-17 on actin cytoskeleton, suggesting that the PKC-α isoform is most likely responsible for CPI-17 activation in the endothelium. Depletion of endogenous CPI-17 in lung microvascular endothelial cell significantly attenuated histamine-induced increase in endothelial permeability. Together these data suggest the potential importance of PKC/CPI-17-mediated pathway in histamine-triggered cytoskeletal rearrangements leading to lung microvascular barrier compromise.


Sign in / Sign up

Export Citation Format

Share Document