scholarly journals Navigating the plant cell: intracellular transport logistics in the green kingdom

2015 ◽  
Vol 26 (19) ◽  
pp. 3373-3378 ◽  
Author(s):  
Anja Geitmann ◽  
Andreas Nebenführ

Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.

2019 ◽  
Vol 20 (12) ◽  
pp. 2946 ◽  
Author(s):  
Xiao Han ◽  
Li-Jun Huang ◽  
Dan Feng ◽  
Wenhan Jiang ◽  
Wenzhuo Miu ◽  
...  

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingqin Chang ◽  
Georgia Drakakaki

If you live in an apartment or a house, you will notice that your home has different rooms separated by walls. A plant is just like your home, except there are many small rooms, called cells. Plant cells, like rooms, are also separated by cell walls. Cell walls are unique and are not found in animal cells. In a building, if you want to turn one large room into two small rooms, you build a new wall to divide it. This is similar to how a plant cell divides into two cells during cell division. To build a wall in a building, you need to employ construction workers, design the building plan, buy building materials, and finally assembly the wall. How does the plant cell take care of these different jobs? This article explains how the cell wall is built in a plant cell during cell division.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


2019 ◽  
Vol 70 (14) ◽  
pp. 3615-3648 ◽  
Author(s):  
Amir J Bidhendi ◽  
Anja Geitmann

Abstract The primary plant cell wall is a dynamically regulated composite material of multiple biopolymers that forms a scaffold enclosing the plant cells. The mechanochemical make-up of this polymer network regulates growth, morphogenesis, and stability at the cell and tissue scales. To understand the dynamics of cell wall mechanics, and how it correlates with cellular activities, several experimental frameworks have been deployed in recent years to quantify the mechanical properties of plant cells and tissues. Here we critically review the application of biomechanical tool sets pertinent to plant cell mechanics and outline some of their findings, relevance, and limitations. We also discuss methods that are less explored but hold great potential for the field, including multiscale in silico mechanical modeling that will enable a unified understanding of the mechanical behavior across the scales. Our overview reveals significant differences between the results of different mechanical testing techniques on plant material. Specifically, indentation techniques seem to consistently report lower values compared with tensile tests. Such differences may in part be due to inherent differences among the technical approaches and consequently the wall properties that they measure, and partly due to differences between experimental conditions.


2019 ◽  
Vol 116 (15) ◽  
pp. 7543-7548 ◽  
Author(s):  
Huan Zhang ◽  
Gozde S. Demirer ◽  
Honglu Zhang ◽  
Tianzheng Ye ◽  
Natalie S. Goh ◽  
...  

Delivery of biomolecules to plants relies onAgrobacteriuminfection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene inNicotiana benthamianaleaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Paulraj ◽  
S. Wennmalm ◽  
D.C.F. Wieland ◽  
A. V. Riazanova ◽  
A. Dėdinaitė ◽  
...  

AbstractThe structural integrity of living plant cells heavily relies on the plant cell wall containing a nanofibrous cellulose skeleton. Hence, if synthetic plant cells consist of such a cell wall, they would allow for manipulation into more complex synthetic plant structures. Herein, we have overcome the fundamental difficulties associated with assembling lipid vesicles with cellulosic nanofibers (CNFs). We prepare plantosomes with an outer shell of CNF and pectin, and beneath this, a thin layer of lipids (oleic acid and phospholipids) that surrounds a water core. By exploiting the phase behavior of the lipids, regulated by pH and Mg2+ ions, we form vesicle-crowded interiors that change the outer dimension of the plantosomes, mimicking the expansion in real plant cells during, e.g., growth. The internal pressure enables growth of lipid tubules through the plantosome cell wall, which paves the way to the development of hierarchical plant structures and advanced synthetic plant cell mimics.


2001 ◽  
Vol 9 (3) ◽  
pp. 14-15 ◽  
Author(s):  
B. A. Richardson ◽  
C. W. Mims

Several years ago Honegger (1985) described a simple technique for removing plant cell protoplasm in order to reveal details of interfaces between plant cells and fungal structures. This technique involves the use of Ariel a commercially available washing powder (Proctor and Gamble) containing a Bacillus substilis derived protease. We since have used this technique with excellent results to examine not only the morphology of fungal haustoria inside leaf cells of various host plants but also features of the inner surface of the host cell wall with scanning electron microscopy (SEM). Here we describe the procedure we have used to prepare samples for study and provide examples of the types of images we have obtained from our samples.


The growth of a plant cell may be separated schematically into the following stages: cell division, plasmatic growth and cell elongation. The definite proof that the growth of plant cells is regulated by plant hormones has first been found for the process of cell elongation. The term auxins is used to designate these hormones. The function of auxins in plants is not limited to cell elongation. Botanical investigations have shown that they also play a role in phototropism and geotropism, that they stimulate root development, induce cambial growth and prevent premature outgrowth of axillary buds. Auxins therefore regulate plant growth in many ways.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252327
Author(s):  
Lisa Stephan ◽  
Marc Jakoby ◽  
Arijit Das ◽  
Eva Koebke ◽  
Martin Hülskamp

The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.


Sign in / Sign up

Export Citation Format

Share Document