scholarly journals Lamin-B1 contributes to the proper timing of epicardial cell migration and function during embryonic heart development

2016 ◽  
Vol 27 (25) ◽  
pp. 3956-3963 ◽  
Author(s):  
Joseph R. Tran ◽  
Xiaobin Zheng ◽  
Yixian Zheng

Lamin proteins form a meshwork beneath the nuclear envelope and contribute to many different cellular processes. Mutations in lamins cause defective organogenesis in mouse models and human diseases that affect adipose tissue, brain, skeletal muscle, and the heart. In vitro cell culture studies have shown that lamins help maintain nuclear shape and facilitate cell migration. However, whether these defects contribute to improper tissue building in vivo requires further clarification. By studying the heart epicardium during embryogenesis, we show that Lb1-null epicardial cells exhibit in vivo and in vitro migratory delay. Transcriptome analyses of these cells suggest that Lb1 influences the expression of cell adhesion genes, which could affect cell migration during epicardium development. These epicardial defects are consistent with incomplete development of both vascular smooth muscle and compact myocardium at later developmental stages in Lb1-null embryos. Further, we found that Lb1-null epicardial cells have a delayed nuclear morphology change in vivo, suggesting that Lb1 facilitates morphological changes associated with migration. These findings suggest that Lb1 contributes to nuclear shape maintenance and migration of epicardial cells and highlights the use of these cells for in vitro and in vivo study of these classic cell biological phenomena.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Olan Jackson-Weaver ◽  
Jian Wu ◽  
Yongchao Gou ◽  
Yibu Chen ◽  
Meng Li ◽  
...  

Rationale: Epicardial epithelial-to-mesenchymal trasition (EMT) is a vital process in embryonic heart development. During EMT, epicardial cells acquire migratory and invasive properties, and differentiate into new cell types, including cardiac fibroblasts and coronary smooth muscle cells. Non-histone protein methylation is an emerging modulator of cell signaling. We have recently established a role for protein arginine methyltransferase-1 (PRMT1) in TGF-β-induced EMT in cultured cells. Objective: To determine the role of PRMT1 in epicardial EMT. Methods and Results: We investigated the role of PRMT1 in epicardial EMT in mouse epicardial cells. Embryonic day 9.5 (E9.5) tamoxifen administration of WT1-Cre ERT ;PRMT1 fl/fl ;ROSA-YFP fl/fl mouse embryos was used to delete PRMT1 in the epicardium. Epicardial PRMT1 deletion led to reduced epicardial migration into the myocardium, a thinner compact myocardial layer, and dilated coronary blood vessels at E15.5. Using the epicardial cell line MEC1, we found that PRMT1 siRNA prevented the increase in mesenchymal proteins Slug and Fibronectin and the decrease in epithelial protein E-Cadherin during TGF-β treatment-induced EMT. PRMT1 siRNA also reduced the migration and invasion of MEC1 cells. We further identified that PRMT1 siRNA also increased the expression of p53, a key regulator of the Slug degradation pathway. PRMT1 siRNA increases p53 expression by decreasing p53 degradation, and shifted p53 localization to the cytoplasm. In vitro methylation assays further demonstrated that PRMT1 methylates p53. Knockdown of p53 increased Slug levels and enhanced EMT, establishing p53 as a regulator of epicardial EMT through controlling Slug expression. Furthermore, RNAseq experiments in MEC1 cells demonstrated that 40% (545/1,351) of TGF-β-induced transcriptional changes were prevented by PRMT1 siRNA. Furthermore, when p53 and PRMT1 were simultaneously knocked down, TGF-β induced transcriptional control of 37% (201/545) of these PRMT1-dependent genes was restored. Conclusions: The PRMT1-p53-Slug pathway is necessary for epicardial EMT in cultured MEC1 cells as well as in the epicardium in vivo . Epicardial PRMT1 is required for the development of compact myocardium and coronary blood vessels.


2018 ◽  
Vol 115 (34) ◽  
pp. 8581-8586 ◽  
Author(s):  
Pengbo Wang ◽  
Marcel Dreger ◽  
Elena Madrazo ◽  
Craig J. Williams ◽  
Rafael Samaniego ◽  
...  

Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5. Similarly, depletion of RbBP5 (another H3K4 methyltransferase subunit) promotes similar defects. We reveal that a 3D environment increases the H3K4 methylation dependent on WDR5 and results in a globally less compacted chromatin conformation. Further, using atomic force microscopy, nuclear particle tracking, and nuclear swelling experiments, we detect changes in nuclear mechanics that accompany the epigenetic changes induced in 3D conditions. Indeed, nuclei from cells in 3D environments were softer, and thereby more deformable, compared with cells in suspension or cultured in 2D conditions, again dependent on WDR5. Dissecting the underlying mechanism, we determined that actomyosin contractility, through the phosphorylation of myosin by MLCK (myosin light chain kinase), controls the interaction of WDR5 with other components of the methyltransferase complex, which in turn up-regulates H3K4 methylation activation in 3D conditions. Taken together, our findings reveal a nongenomic function for WDR5 in regulating H3K4 methylation induced by 3D environments, physical properties of the nucleus, cell polarity, and cell migratory capacity.


2004 ◽  
Vol 24 (24) ◽  
pp. 10905-10922 ◽  
Author(s):  
Matthew Grove ◽  
Galina Demyanenko ◽  
Asier Echarri ◽  
Patricia A. Zipfel ◽  
Marisol E. Quiroz ◽  
...  

ABSTRACT The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Cruz-Zárate ◽  
O. López-Ortega ◽  
D. A. Girón-Pérez ◽  
A. M. Gonzalez-Suarez ◽  
J. L. García-Cordero ◽  
...  

AbstractCell migration is a dynamic process that involves adhesion molecules and the deformation of the moving cell that depends on cytoskeletal remodeling and actin-modulating proteins such as myosins. In this work, we analyzed the role of the class I Myosin-1 g (Myo1g) in migratory processes of LPS + IL-4 activated B lymphocytes in vivo and in vitro. In vivo, the absence of Myo1g reduced homing of activated B lymphocytes into the inguinal lymph node. Using microchannel chambers and morphology analysis, we found that the lack of Myo1g caused adhesion and chemotaxis defects. Additionally, deficiency in Myo1g causes flaws in adopting a migratory morphology. Our results highlight the importance of Myo1g during B cell migration.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuan-Hung Liu ◽  
Shih-Yun Huang ◽  
Yi-Shuan Lin ◽  
Hsing-Yu Huang

Recent studies report that postnatal mammalian hearts undergo cardiomyocyte refreshment. While the exact origin of the cells involved in postnatal cardiomyogenesis remains unclear. Here, we identified a pool of Nkx2.5 enhancer expressing cells in the postnatal mouse heart with cardiomyogenic differentiation potential in vitro. We tracked the expression of a cardiac-specific enhancer of Nkx2.5 using inducible Nkx2.5 enhancer-Cre mice from embryonic development to adulthood and post-myocardial infarction (MI) and documented the Nkx2.5 enhancer expressing cells directly contribute to postnatal cardiomyogenesis in vivo. Upon genetic ablation of these activated progenitors after myocardial injury, the cardiac function deteriorated. Transcriptomic analysis of Nkx2.5 enhancer expressing cells showed high expression of heart development genes. To trace the developmental origin of the activated Nkx2.5 cardiomyogenic progenitor cells, we created different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter triple transgenic mice. Post-MI Nkx2.5 cardiomyogenic progenitor cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells, or perinatal/postnatal epicardial cells. Together, this study confirmed that cardiac lineage-specific progenitor cells, which originate from embryonic epicardium-derived cells, contribute to postnatal mammalian cardiomyogenesis.


2017 ◽  
Vol 114 (20) ◽  
pp. 5195-5200 ◽  
Author(s):  
Nancy Costigliola ◽  
Liya Ding ◽  
Christoph J. Burckhardt ◽  
Sangyoon J. Han ◽  
Edgar Gutierrez ◽  
...  

The intermediate filament vimentin is required for cells to transition from the epithelial state to the mesenchymal state and migrate as single cells; however, little is known about the specific role of vimentin in the regulation of mesenchymal migration. Vimentin is known to have a significantly greater ability to resist stress without breaking in vitro compared with actin or microtubules, and also to increase cell elasticity in vivo. Therefore, we hypothesized that the presence of vimentin could support the anisotropic mechanical strain of single-cell migration. To study this, we fluorescently labeled vimentin with an mEmerald tag using TALEN genome editing. We observed vimentin architecture in migrating human foreskin fibroblasts and found that network organization varied from long, linear bundles, or “fibers,” to shorter fragments with a mesh-like organization. We developed image analysis tools employing steerable filtering and iterative graph matching to characterize the fibers embedded in the surrounding mesh. Vimentin fibers were aligned with fibroblast branching and migration direction. The presence of the vimentin network was correlated with 10-fold slower local actin retrograde flow rates, as well as spatial homogenization of actin-based forces transmitted to the substrate. Vimentin fibers coaligned with and were required for the anisotropic orientation of traction stresses. These results indicate that the vimentin network acts as a load-bearing superstructure capable of integrating and reorienting actin-based forces. We propose that vimentin's role in cell motility is to govern the alignment of traction stresses that permit single-cell migration.


2010 ◽  
Vol 21 (2) ◽  
pp. 369-376 ◽  
Author(s):  
Vicente A. Torres ◽  
Ainhoa Mielgo ◽  
Simone Barbero ◽  
Ruth Hsiao ◽  
John A. Wilkins ◽  
...  

Caspase-8 is a key apical sensory protein that governs cell responses to environmental cues, alternatively promoting apoptosis, proliferation, and cell migration. The proteins responsible for integration of these pathways, however, have remained elusive. Here, we reveal that Rab5 regulates caspase-8–dependent signaling from integrins. Integrin ligation leads to Rab5 activation, association with integrins, and activation of Rac, in a caspase-8–dependent manner. Rab5 activation promotes colocalization and coprecipitation of integrins with caspase-8, concomitant with Rab5 recruitment to integrin-rich regions such as focal adhesions and membrane ruffles. Moreover, caspase-8 expression promotes Rab5-mediated internalization and the recycling of β1 integrins, increasing cell migration independently of caspase catalytic activity. Conversely, Rab5 knockdown prevented caspase-8–mediated integrin signaling for Rac activation, cell migration, and apoptotic signaling, respectively. Similarly, Rab5 was critical for caspase-8–driven cell migration in vivo, because knockdown of Rab5 compromised the ability of caspase-8 to promote metastasis under nonapoptotic conditions. These studies identify Rab5 as a key integrator of caspase-8–mediated signal transduction downstream of integrins, regulating cell survival and migration in vivo and in vitro.


2004 ◽  
Vol 166 (6) ◽  
pp. 901-912 ◽  
Author(s):  
Dominic M. Clarke ◽  
Michael C. Brown ◽  
David P. LaLonde ◽  
Christopher E. Turner

Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration.


2021 ◽  
Vol 22 (13) ◽  
pp. 6649
Author(s):  
Yunan Gao ◽  
Yan Sun ◽  
Adife Gulhan Ercan-Sencicek ◽  
Justin S. King ◽  
Brynn N. Akerberg ◽  
...  

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.


2021 ◽  
Author(s):  
Trond Are Mannsåker ◽  
Tuyen Hoang ◽  
Synnøve Nymark Aasen ◽  
Ole Vidhammer Bjørnstad ◽  
Himalaya Parajuli ◽  
...  

Abstract Background Melanoma is one of the cancer types that have high potential to metastasise to the brain. Recent advances in targeted therapies and immunotherapies have changed the therapeutical landscape of extra-cranial melanoma. However, few patients with melanoma brain metastases (MBM) respond effectively to recent treatments and new therapeutic strategies are needed. Cabozantinib is a receptor tyrosine kinase (RTK) inhibitor, already approved by FDA for treatment of renal cell carcinoma, medullary thyroid cancer and hepatocellular carcinoma. The drug also targets several of the proteins which are known to be dysregulated in melanomas and may therefore have a potential role in melanoma treatment. In this study, we investigated the effect of cabozantinib on MBM cell growth and migration in vitro, and further identified its associated molecular components. Methods The anti-tumour activity of cabozantinib was investigated on three human MBM cell lines (H1, H3, H10) developed in our laboratory, through monolayer cell viability assays, tumoursphere experiments, cell migration assays, flow cytometry and caspase 3/7 apoptosis assays, RTK array screening and western blots (WB) to validate the array findings. Results Cabozantinib treatment decreased the viability of MBM cell lines both when grown in monolayer cultures and as tumour spheroids. The in vitro cell migration was also inhibited, and apoptosis was induced by cabozantinib. The phosphorylated RTKs p-PDGF-Rα, p-IGF-1R, p-MERTK and p-DDR1 were found to be downregulated in the p-RTK array of MBM cells after cabozantinib treatment. These results were validated with WB. Further, WB showed that cabozantinib treatment inhibited p-Akt and p-MEK 1/2. Conclusions For the first time, we show that cabozantinib effectively inhibits viability, growth and migration of MBM cells in vitro. Moreover, the drug induces apoptosis and downregulates the p-RTK p-PDGF-Rα, p-IGF-1R, p-MERTK and p-DDR1 in MBM cells. Further in vivo experiments are needed to bring cabozantinib forward as a potential, adjuvant treatment of patients with MBM.


Sign in / Sign up

Export Citation Format

Share Document