scholarly journals Cytoskeleton integrity influences XRCC1 and PCNA dynamics at DNA damage

2021 ◽  
pp. mbc.E20-10-0680
Author(s):  
Verena Hurst ◽  
Kiran Challa ◽  
Kenji Shimada ◽  
Susan M. Gasser

Upon induction of DNA damage with 405 nm laser light, proteins involved in Base Excision Repair (BER) are recruited to DNA lesions. We find that the dynamics of factors typical of either short-patch (XRCC1) or long-patch (PCNA) BER are altered by chemicals that perturb actin or tubulin polymerization in human cells. Whereas the destabilization of actin filaments by Latrunculin B, Cytochalasin B or Jasplakinolide decreases BER factor accumulation at laser-induced damage, inhibition of tubulin polymerization by Nocodazole increases it. We detect no recruitment of actin to sites of laser-induced DNA damage, yet the depolymerization of cytoplasmic actin filaments elevates both actin and tubulin signals in the nucleus. While published evidence suggested a positive role for F-actin in double-strand break repair in mammals, the enrichment of actin in budding yeast nuclei interferes with BER, augmenting sensitivity to Zeocin. Our quantitative imaging results suggest that the depolymerization of cytoplasmic actin may compromise BER efficiency in mammals not only due to elevated levels of nuclear actin, but also of tubulin. Our study is one of few linking cytoskeletal integrity to BER. [Media: see text] [Media: see text]

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evi Goulielmaki ◽  
Maria Tsekrekou ◽  
Nikos Batsiotos ◽  
Mariana Ascensão-Ferreira ◽  
Eleftheria Ledaki ◽  
...  

AbstractRNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders.


2019 ◽  
Author(s):  
Nadezda V Volkova ◽  
Bettina Meier ◽  
Víctor González-Huici ◽  
Simone Bertolini ◽  
Santiago Gonzalez ◽  
...  

AbstractMutations arise when DNA lesions escape DNA repair. To delineate the contributions of DNA damage and DNA repair deficiency to mutagenesis we sequenced 2,717 genomes of wild-type and 53 DNA repair defective C. elegans strains propagated through several generations or exposed to 11 genotoxins at multiple doses. Combining genotoxin exposure and DNA repair deficiency alters mutation rates or leads to unexpected mutation spectra in nearly 40% of all experimental conditions involving 9/11 of genotoxins tested and 32/53 genotypes. For 8/11 genotoxins, signatures change in response to more than one DNA repair deficiency, indicating that multiple genes and pathways are involved in repairing DNA lesions induced by one genotoxin. For many genotoxins, the majority of observed single nucleotide variants results from error-prone translesion synthesis, rather than primary mutagenicity of altered nucleotides. Nucleotide excision repair mends the vast majority of genotoxic lesions, preventing up to 99% of mutations. Analogous mutagenic DNA damage-repair interactions can also be found in cancers, but, except for rare cases, effects are weak owing to the unknown histories of genotoxic exposures and DNA repair status. Overall, our data underscore that mutation spectra are joint products of DNA damage and DNA repair and imply that mutational signatures computationally derived from cancer genomes are more variable than currently anticipated.


2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1671 ◽  
Author(s):  
Marios G. Krokidis ◽  
Mariarosaria D’Errico ◽  
Barbara Pascucci ◽  
Eleonora Parlanti ◽  
Annalisa Masi ◽  
...  

Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


2006 ◽  
Vol 26 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Guochun Jiang ◽  
Aziz Sancar

ABSTRACT We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.


Author(s):  
Yeldar Baiken ◽  
Damira Kanayeva ◽  
Sabira Taipakova ◽  
Regina Groisman ◽  
Alexander A. Ishchenko ◽  
...  

Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions. Although CDD naturally constitutes a relatively minor fraction of the overall DNA damage induced by free radicals, DNA cross-linking agents, and ionizing radiation, if left unrepaired, these lesions cause a number of serious consequences, such as gross chromosomal rearrangements and genome instability. If not tightly controlled, the repair of ICLs and clustered bi-stranded oxidized bases via DNA excision repair will either inhibit initial steps of repair or produce persistent chromosomal breaks and consequently be lethal for the cells. Biochemical and genetic evidences indicate that the removal of CDD requires concurrent involvement of a number of distinct DNA repair pathways including poly(ADP-ribose) polymerase (PARP)-mediated DNA strand break repair, base excision repair (BER), nucleotide incision repair (NIR), global genome and transcription coupled nucleotide excision repair (GG-NER and TC-NER, respectively), mismatch repair (MMR), homologous recombination (HR), non-homologous end joining (NHEJ), and translesion DNA synthesis (TLS) pathways. In this review, we describe the role of DNA glycosylase-mediated BER pathway in the removal of complex DNA lesions.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Chiara Milanese ◽  
Cíntia R. Bombardieri ◽  
Sara Sepe ◽  
Sander Barnhoorn ◽  
César Payán-Goméz ◽  
...  

Abstract Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1303 ◽  
Author(s):  
Karwowski

DNA lesions are formed continuously in each living cell as a result of environmental factors, ionisation radiation, metabolic processes, etc. Most lesions are removed from the genome by the base excision repair system (BER). The activation of the BER protein cascade starts with DNA damage recognition by glycosylases. Uracil-DNA glycosylase (UDG) is one of the most evolutionary preserved glycosylases which remove the frequently occurring 2′-deoxyuridine from single (ss) and double-stranded (ds) oligonucleotides. Conversely, the unique tandem lesions (5′R)- and (5′S)-5′,8-cyclo-2′-deoxyadenosine (cdA) are not suitable substrates for BER machinery and are released from the genome by the nucleotide excision repair (NER) system. However, the cyclopurines appearing in a clustered DNA damage structure can influence the BER process of other lesions like dU. In this article, UDG inhibition by 5′S- and 5′R-cdA is shown and discussed in an experimental and theoretical manner. This phenomenon was observed when a tandem lesion appears in single or double-stranded oligonucleotides next to dU, on its 3′-end side. The cdA shift to the 5′-end side of dU in ss-DNA stops this effect in both cdA diastereomers. Surprisingly, in the case of ds-DNA, 5′S-cdA completely blocks uracil excision by UDG. Conversely, 5′R-cdA allows glycosylase for uracil removal, but the subsequently formed apurinic/apyrimidinic (AP) site is not suitable for human AP-site endonuclease 1 (hAPE1) activity. In conclusion, the appearance of the discussed tandem lesion in the structure of single or double-stranded DNA can stop the entire base repair process at its beginning, which due to UDG and hAPE1 inhibition can lead to mutagenesis. On the other hand, the presented results can cast some light on the UDG or hAPE1 inhibitors being used as a potential treatment.


Sign in / Sign up

Export Citation Format

Share Document