Behavioral Flexibility and Anticipatory Behavior

Author(s):  
Martin V. Butz ◽  
Esther F. Kutter

While reward-oriented learning can adapt and optimize behavior, this chapter shows how behavior can become anticipatory and selectively goal-oriented. Flexibility and adaptability are necessary when living in changing environmental niches. As a consequence, different locations in the environment need to be distinguished to enable selective and optimally attuned interactions. To accomplish this, sensorimotor learning is necessary. With sufficient sensorimotor knowledge, the progressively abstract learning of environmental predictive models becomes possible. These models enable forward anticipations about action consequences and incoming sensory information. As a consequence, our own influences on the environment can be distinguished from other influences, following the re-afference principle. Moreover, inverse anticipations enable the selection of the behavior that is believed to reach current goals most effectively. Coupled with motivations, goal-directed behavior can be generated self-motivatedly. Furthermore, curious, information seeking, epistemic behavior can be generated. The remainder of the book addresses how the brain accomplishes this goal-oriented, self-motivated generation of behavior and thought, where the latter can be considered mental behavior.

2021 ◽  
Author(s):  
Caroline Juliette Charpentier ◽  
Irene Cogliati Dezza

Recent advancements in psychology, behavioral economics and neuroscience have shown the human pursuit of knowledge to be an essential aspect of human cognition. It drives intellectual development, is integral to social interactions, and is crucial for learning, decision-making and goal-directed behavior. Information appears to be valuable in and of itself, even when it has no apparent use, whereas at other times, instrumental information is actively and paradoxically avoided. With this complex role, a wide range of neural mechanisms can be deployed to assign value to information and drive decisions to seek (or avoid) information. Evidence points towards key roles for the mesolimbic system and the prefrontal cortex in these processes. Specifically, two different networks appear to be involved in the implementation of information-seeking behaviors. One network, overlapping with areas involved in processing primary and monetary rewards, appear to drive a general preference for information, as well as valence-dependent information-seeking. The other network, independent of reward processing, is recruited when information is acquired to reduce uncertainty. In this chapter, we review some of the most recent discoveries in the field to provide an overview of the neural basis of information-seeking.


Author(s):  
Isaac Morán ◽  
Javier Perez-Orive ◽  
Jonathan Melchor ◽  
Tonatiuh Figueroa ◽  
Luis Lemus

AbstractIn human speech and communication across various species, recognizing and categorizing sounds is fundamental for the selection of appropriate behaviors. But how does the brain decide which action to perform based on sounds? We explored whether the premotor supplementary motor area (SMA), responsible for linking sensory information to motor programs, also accounts for auditory-driven decision making. To this end, we trained two rhesus monkeys to discriminate between numerous naturalistic sounds and words learned as target (T) or non-target (nT) categories. We demonstrated that the neural population is organized differently during the auditory and the movement periods of the task, implying that it is performing different computations in each period. We found that SMA neurons perform acoustic-decision-related computations that transition from auditory to movement representations in this task. Our results suggest that the SMA integrates sensory information while listening to auditory stimuli in order to form categorical signals that drive behavior.


2020 ◽  
Author(s):  
Iris Titos ◽  
Dragana Rogulja

Since sensory information is always present in the environment, animals need to internally regulate their responsiveness to fit the context. During sleep, the threshold for sensory arousal is increased so that only stimuli of sufficient magnitude can cross it. The mechanisms that make arousability flexible are largely mysterious, but they must integrate sensory information with information about physiology. We discovered a gut-to-brain signaling pathway that uses information about ingested nutrients to control arousability from sleep, without affecting sleep duration. Protein ingestion causes endocrine cells in the Drosophila gut to increase production of CCHa1, a peptide that decreases sensory responsiveness. CCHa1 is received by a small group of brain dopaminergic neurons whose activity gates behavioral responsiveness to mechanical stimulation. These dopaminergic neurons innervate the mushroom body, a brain structure involved in determining sleep duration. This work describes how the gut tunes arousability according to nutrient availability, allowing deeper sleep when dietary proteins are abundant. It also suggests that behavioral flexibility is increased through independent tuning of sleep depth and duration.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


Author(s):  
Ann-Sophie Barwich

How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities on the basis of previous experiences. Drawing on this development, this chapter analyses perceptions as processes. Looking at olfaction as a model system, it argues for the need to abandon a stimulus-centred perspective, where smells are thought of as stable percepts, computationally linked to external objects such as odorous molecules. Perception here is presented as a measure of changing signal ratios in an environment informed by expectancy effects from top-down processes.


Author(s):  
Riitta Salmelin ◽  
Jan Kujala ◽  
Mia Liljeström

When seeking to uncover the brain correlates of language processing, timing and location are of the essence. Magnetoencephalography (MEG) offers them both, with the highest sensitivity to cortical activity. MEG has shown its worth in revealing cortical dynamics of reading, speech perception, and speech production in adults and children, in unimpaired language processing as well as developmental and acquired language disorders. The MEG signals, once recorded, provide an extensive selection of measures for examination of neural processing. Like all other neuroimaging tools, MEG has its own strengths and limitations of which the user should be aware in order to make the best possible use of this powerful method and to generate meaningful and reliable scientific data. This chapter reviews MEG methodology and how MEG has been used to study the cortical dynamics of language.


2015 ◽  
Vol 19 (11) ◽  
pp. 1976-1982
Author(s):  
Tom Baranowski ◽  
Tzu-An Chen ◽  
Teresia M O’Connor ◽  
Sheryl O Hughes ◽  
Cassandra S Diep ◽  
...  

AbstractObjectiveHabit has been defined as the automatic performance of a usual behaviour. The present paper reports the relationships of variables from a Model of Goal Directed Behavior to four scales in regard to parents’ habits when feeding their children: habit of (i) actively involving child in selection of vegetables; (ii) maintaining a positive vegetable environment; (iii) positive communications about vegetables; and (iv) controlling vegetable practices. We tested the hypothesis that the primary predictor of each habit variable would be the measure of the corresponding parenting practice.DesignInternet survey data from a mostly female sample. Primary analyses employed regression modelling with backward deletion, controlling for demographics and parenting practices behaviour.SettingHouston, Texas, USA.SubjectsParents of 307 pre-school (3–5-year-old) children.ResultsThree of the four models accounted for about 50 % of the variance in the parenting practices habit scales. Each habit scale was primarily predicted by the corresponding parenting practices scale (suggesting validity). The habit of active child involvement in vegetable selection was also most strongly predicted by two barriers and rudimentary self-efficacy; the habit of maintaining a positive vegetable environment by one barrier; the habit of maintaining positive communications about vegetables by an emotional scale; and the habit of controlling vegetable practices by a perceived behavioural control scale.ConclusionsThe predictiveness of the psychosocial variables beyond parenting practices behaviour was modest. Discontinuing the habit of ineffective controlling parenting practices may require increasing the parent’s perceived control of parenting practices, perhaps through simulated parent–child interactions.


2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


Sign in / Sign up

Export Citation Format

Share Document