6. Minerals as resources

Author(s):  
David Vaughan

The mineral resources taken from the Earth are now essential for human survival and the growth in consumption in recent years has been dramatic. ‘Minerals as resources’ looks at the different kinds of resources: ores from which metals are extracted, industrial minerals such as fluorite, and chemical minerals such as halite. The properties of minerals are important in how they are used. For example, the carbon mineral, diamond, is the hardest substance known and is used in industry for making cutting tools, whereas the clay mineral, kaolinite, is inert and is used in many manufacturing processes. Zeolites are used to extract impurities from water. But how are these mineral deposits formed?

Author(s):  
G.G. Tkachenko

Морское побережье является одной из самых выраженных естественных географических границ, которая одновременно разделяет и связывает географические структуры суши морей или океанов. В основе формирования типов природопользования в прибрежных зонах, как и на других типах географического пространства, лежит природноресурсный потенциал. Природноресурсный потенциал и типы природопользования как явления пространственнодифференцированные должны быть рассмотрены, прежде всего, в рамках классических географических подходов и оценок, таких как районирование территории и акватории. При этом пространственные сочетания наземных и морских природных, природноресурсных компонентов рассматриваются как важнейшие предпосылки инфраструктурного и хозяйственного развития прибрежных регионов. Необходимым этапом природноресурсного районирования является выявление границ, при пересечении которых существенно меняются природные ресурсы и условия. Данная работа выполнена на примере рассмотрения минеральных ресурсов прибрежных муниципальных образований и является частью исследования природноресурсных сочетаний зоны сушаокеан Дальнего Востока России в рамках изучения пространственной дифференциации факторов, условий и ограничений формирования и развития структур природопользования в прибрежной зоне Тихоокеанской России с учетом воздействия экстремальных природных процессов и явлений. Дана сравнительная характеристика месторождений минерального сырья российской части побережья Японского моря. Определена их видовая и географическая структура. На основе того, что месторождения минерального сырья сгруппированы в 8 основных ресурсных групп ввыполнено районирование российской части побережья Японского моря по сочетанию основных видов минеральных ресурсов. Выделены типы муниципальных образований по сочетанию минеральных ресурсов и показаны особенности каждого из них. Выделены шесть районов по сочетанию минеральных ресурсов. В связи с необходимостью учета географической особенности в сочетании со спецификой минеральных ресурсов, северной и южной частям территории одного типа районов присвоены свои собственные названия. По результатам исследования была построена карта. The seacoast is one of the most pronounced natural geographical boundaries, which divides and connects simultaneously the geographical structures of the land, seas or oceans. The formation of the types of nature management in coastal zones, as well as on other types of geographical space, is based on the natural resource potential. Being spatially differentiated phenomena, the natural resource potential and the types of environmental management should be considered, first of all, within the framework of classical geographical approaches and assessments, such as zoning of the territory and water areas. In this case, spatial combinations of the land and sea natural, naturalresource components are considered as the most important prerequisites for the infrastructure and economic development of coastal regions. Identification of borders, at the intersection of which the natural resources and conditions change significantly, is a necessary stage of natural resource zoning. This work is carried out by example of consideration of mineral resources of coastal municipal unions and appears to be a part of studies of naturalresource combinations of the landocean zone of the Russian Far East in the framework of studies of spatial differentiation of factors, conditions and restrictions of formation and development of structures of nature management in the coastal zone of Pacific Russia, taking into account the influence of extreme natural processes and phenomena. The comparative characteristic of mineral deposits of the Russian part of the coast of the Sea of Japan is given. Their species and a geographical structure are determined. Based on the fact that the mineral deposits are grouped into eight main resource groups, zoning of the Russian part of the coast of the Sea of Japan by a combination of the main types of mineral resources is performed. The types of municipalities are allocated by a combination of mineral resources and their features are shown. Six areas are singled out by a combination of mineral resources. Due to the need to take into account the geographical features in combination with the specifics of mineral resources, the northern and southern parts of the territory of one type of areas have obtained their own names. According to the results of the studies, the map has been compiled.


Clay Minerals ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 25-55 ◽  
Author(s):  
C. V. Jeans ◽  
D. S. Wray ◽  
R. J. Merriman ◽  
M. J. Fisher

AbstractThe nature and origin of authigenic clay minerals and silicate cements in the Jurassic and Cretaceous sediments of England and the North Sea are discussed in relation to penecontemporaneous volcanism in and around the North Sea Basin. Evidence, including new REE data, suggests that the authigenic clay minerals represent the argillization of volcanic ash under varying diagenetic conditions, and that volcanic ash is a likely source for at least the early silicate cements in many sandstones. The nature and origin of smectite-rich, glauconite-rich, berthierine-rich and kaolin-rich volcanogenic clay mineral deposits are discussed. Two patterns of volcanogenic clay minerals facies are described. Pattern A is related to ash argillization in the non-marine and marine environments. Pattern B is developed by the argillization of ash concentrated in the sand and silt facies belts in the seas bordering ash-covered islands and massifs. It is associated with regression/ transgression cycles which may be related to thermal doming and associated volcanism, including the submarine release of hydrothermal fluids rich in Fe. The apparent paucity of volcanogenic clay deposits in the Jurasssic and Early Cretaceous sediments of the North Sea is discussed.


2011 ◽  
Vol 123 (1) ◽  
pp. 2
Author(s):  
R.W. Home

In setting up the Flagstaff Observatory in Melbourne in 1857, the young German geophysicist Georg Neumayer brought new standards of precision to the pursuit of physics in Australia. His wide-ranging research program in geomagnetism, meteorology and oceanography was conceived within an overall approach to science associated especially with the name of Alexander von Humboldt, that saw the Earth and its oceans and atmosphere as an integrated dynamical system. Neumayer also, however, envisaged immediate practical outcomes from his work, whether in determining optimal sailing routes between Europe and Australia, or in locating new mineral deposits. From a personal point of view he regarded his seven years in Australia as, above all, a preparation for the scientific investigation of Antarctica that he dreamed in vain of undertaking.


2014 ◽  
Vol 2 ◽  
pp. 24-35
Author(s):  
Kabiraj Paudyal

A detailed geological investigation was carried out to assess the distribution of minerals and their geological control in Bandipur-Gondrang area of Tanahu district, a part of Lesser Himalaya in central Nepal. The area is found rich in both metallic and non-metallic mineral deposits. The main metallic minerals found are iron in Phalamdada and Labdi Khola, copper in Bhut Khola and poly-metallic deposits including suspected gold in Bhangeri Khola and Jaubari Khola-Bar Khola sections. A large deposit of inorganic carbon is found around the Gondrang-Watak area. Similarly, a good quality of green marble (metabasite) is found as decorative stone in Bagar Khola area and good quality of roofing stone in Bandipur area. In addition to these economic deposits other several sub economic to non-economic mineral are also located in the geological map of the area. Categorization of these mineral deposits is based on the probable reserve and laboratory analysis of related samples. Geological control of mineral deposits is considered to be the stratigraphic, structural, metamorphic and hydrothermal. Iron mineralization of the area is found stratigraphical control, copper deposits by magmatism of basic rocks (amphibolites), and poly-metallic deposits are related to the hydrothermal processes.


Author(s):  
Владимир Щипцов

The Fennoscandian Shield is a megastructure, which has actively evolved since the early stages of earth crust formation (> 3.5 Ga) and a sequence of geological regimes during subsequent geological evolution paralleled by the formation of various types of industrial mineral deposits. The paper shows the important role of the shield’s industrial minerals in the exploitation of global useful mineral deposits played for decades. The industrial mineral potential and its dependence on socio-economic conditions, environmental requirements and market demand are described.


2021 ◽  
Vol 94 (1) ◽  
pp. 228-236
Author(s):  
A. B. Kolokoltseva ◽  

Russia is the largest country in the world and occupies one of the leading places on the planet in terms of natural resources, but the bulk of deposits were explored to some extent more than a quarter of a century ago, back in the Soviet era. Due to the changes in the sources of financing for the reproduction of mineral resources and geological exploration of the subsurface, qualitative and quantitative indicators are reduced by an order of magnitude, which leads to greater risks in the development of mineral deposits. Even despite the large number of scientific papers, the economic situation forces us to search for more modern and multi-parametric methods for evaluating the efficiency of mining. The article considers the main economic methods for evaluating the efficiency of mining, determines their essence and application features. On the basis of conducted analysis, disadvantages and advantages of using the studied methods were identified, and the author's interpretation of the economic assessment of efficiency of mining resources was given.


Author(s):  
H. A. F. Chaves

Characteristic analysis is well known in mineral resources appraisal and has proved useful for petroleum exploration. It also can be used to integrate geological data in sedimentary basin analysis and hydrocarbon assessment, considering geological relationships and uncertainties that result from lack of basic geological knowledge, A generalization of characteristic analysis, using fuzzy-set theory and fuzzy logic, may prove better for quantification of geologic analogues and also for description of reservoir and sedimentary facies. Characteristic analysis is a discrete multivariate procedure for combining and interpreting data; Botbol (1971) originally proposed its application to geology, geochemistry, and geophysics. It has been applied mainly in the search for poorly exposed or concealed mineral deposits by exploring joint occurrences or absences of mineralogical, lithological, and structural attributes (McCammon et al., 1981). It forms part of a systematic approach to resource appraisal and integration of generalized and specific geological knowledge (Chaves, 1988, 1989; Chaves and Lewis, 1989). The technique usually requires some form of discrete sampling to be applicable—generally a spatial discretization of maps into cells or regular grids (Melo, 1988). Characteristic analysis attempts to determine the joint occurrences of various attributes that are favorable for, related to, or indicative of the occurrence of the desired phenomenon or target. In geological applications, the target usually is an economic accumulation of energy or mineral resources. Applying characteristic analysis requires the following steps: 1) the studied area is sampled using a regular square or rectangular grid of cells; 2) in each cell the favorabilities of the variables are expressed in binary or ternary form; 3) a model is chosen that indicates the cells that include the target (Sinding-Larsen et al, 1979); and 4) a combined favorability map of the area is produced that points out possible new targets. The favorability of individual variables is expressed either in binary form— assigning a value of +1 to favorable and a value of 0 to unfavorable or unevaluated variables—or in ternary form if the two states represented by 0 are distinguishable—the value +1 again means favorable, the value —1 means unfavorable, and the value 0 means unevaluated.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Sang-Joon Pak ◽  
Inah Seo ◽  
Kyeong-Yong Lee ◽  
Kiseong Hyeong

The critical metal contents of four types of seabed mineral resources, including a deep-sea sediment deposit, are evaluated as potential rare earth element (REE) resources. The deep-sea resources have relatively low total rare earth oxide (TREO) contents, a narrow range of TREO grades (0.049–0.185%), and show characteristics that are consistent with those of land-based ion adsorption REE deposits. The relative REO distributions of the deep-seabed resources are also consistent with those of ion adsorption REE deposits on land. REEs that are not part of a crystal lattice of host minerals within deep-sea mineral deposits are favorable for mining, as there is no requirement for crushing and/or pulverizing during ore processing. Furthermore, low concentrations of Th and U reduce the risk of adverse environmental impacts. Despite the low TREO grades of the deep-seabed mineral deposits, a significant TREO yield from polymetallic nodules and REE-bearing deep-sea sediments from the Korean tenements has been estimated (1 Mt and 8 Mt, respectively). Compared with land-based REE deposits, deep-sea mineral deposits can be considered as low-grade mineral deposits with a large tonnage. The REEs and critical metals from deep-sea mineral deposits are important by-products and co-products of the main commodities (e.g., Co and Ni), and may increase the economic feasibility of their extraction.


Author(s):  
C. Jebaraj ◽  
D. Kingsly Jeba Singh

This work explains the development of an integrated modeler, which is applied in the design-to-manufacturing stages of manufacturing processes namely machining, sheet metal processing and forging. Its system architecture is broadly divided into four modules namely, Feature Based Design (FBD), Virtual Factory Environment (VFE), Process Based Feature Mapping (PBFM) and Process Planning (PP). Feature based design is used for the design, modeling, synthesis, representation and validation of the components for manufacturing applications. New set of features namely integrated features are pre-defined as feature templates and instanced to get / derive the information required for the design-to-manufacturing stages of the components. VFE defines the factory, which provides the database for operations, machines, cutting tools, work pieces etc. The knowledge base of the developed system maps validated features of the component into operation sets in the first phase of the PBFM. Each operation in the operation sets can be executed using different machines and tools in a factory. All these possible choices are obtained in the second phase of PBFM. Genetic algorithm is used to find the optimal sequence of operations, machines and tools for different criteria in the process planning stage. This paper explains the developed system with case studies.


Sign in / Sign up

Export Citation Format

Share Document