Epithelial-to-Mesenchymal Transition (EMT) and Signal Transducers and Activators of Transcription (STAT3) Are a Novel Therapeutic Strategy for Hepatocellular Carcinoma (HCC) Prognosis

2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S134-S134
Author(s):  
Amira Fyala ◽  
Ahmed Sultan

Abstract Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and is the second most common cancer in Egypt. Poor diagnosis of HCC is correlated with vascular invasion and metastasis. Epithelial-to-mesenchymal transition (EMT) is the main step in the tumor invasion process whereby epithelial cells lose cell polarity with each other and then undergo a dramatic remodeling of the cytoskeleton. Also, EMT plays a pivotal role in metastasis when epithelial cell layers lose cell-cell contacts in tumor progression due to the loss of E-cadherin and increasing the ability of the spread into surrounding tissues. Signal transducers and activators of transcription (STAT) play a different cellular function as signal transducers in the cytoplasm and transcription activators in the nucleus. STAT3 gene plays a crucial role to affect EMT in cancer progression by promoting cell proliferation and survival through its function as a transcription factor of the tumor. The aim of our study is to investigate the gene expression of STAT3 in HCC (HepG-2) cell lines and the expression of cell differentiation and proliferation markers. Western blotting was used to examine the protein expression of STAT3, E-cadherin, and β-catenin signaling. Our results showed that STAT3 expression levels were detected, as well as a significant increase in the expression of proliferation marker as β-catenin and a significant decrease of differentiation marker as E-cadherin protein expression levels in HepG-2 cell lines. Conclusion Our finding provides novel evidence for using a molecular gene therapy as STAT3, which showed an effect on EMT that plays a pivotal role in the prognosis of HCC. The loss of E-cadherin expression is a hallmark of EMT, because β-catenin is associated with the cytoplasmic domain of E-cadherin. We have emphasized the significant role of EMT and STAT3 in HCC progression, which could be a potential application as a novel therapeutic strategy for HCC treatment.

2019 ◽  
Vol 47 (3) ◽  
pp. 1319-1329 ◽  
Author(s):  
Jian Zhang ◽  
Hai Ma ◽  
Liu Yang ◽  
Hongchun Yang ◽  
Zhenxing He

Objectives Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC. Methods Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the TROP2 gene. Results Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the TROP2 gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the TROP2 gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells. Conclusions The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.


2017 ◽  
Vol 41 (4) ◽  
pp. 1584-1595 ◽  
Author(s):  
Tao Ye ◽  
Jing Xu ◽  
Ling Du ◽  
Wenhui Mo ◽  
Yiming Liang ◽  
...  

Background/Aims: Dysregulation of ubiquitin-associated protein 2-like (UBAP2L) has been reported in tumors, but its role in hepatocellular carcinoma (HCC) progression is unclear. Methods: The expression levels of UBAP2L in HCC tissues and HCC cell lines were detected by western blot and quantitative real-time (qRT) PCR. The effects of UBAP2L expression on HCC cell biological traits, including migration and invasion, were investigated by wound healing assay and matrigel transwell assay. Simultaneously, the expression of epithelial-mesenchymal transition (EMT) markers including E-cadherin, CK-18, N-cadherin, Vimentin, Claudin7 and the promoter activity of E-cadherin were detected by western blot and qRT-PCR. Subsequently, role of SNAIL1 in UBAP2L-mediated EMT and the mechanism underlying UBAP2L-mediated SNAIL1 expression were further investigated. Results: UBAP2L was overexpressed in human HCC tissues compared with peri-tumoral tissues. Downregulation of UBAP2L inhibited migration, invasion and the EMT in highly metastatic HCC cell lines. Furthermore, UBAP2L knockdown inhibited expression of the transcriptional repressor SNAIL1 and its ability to bind to the E-cadherin promoter via SMAD2 signaling pathway, which in turn resulted in increased E-cadherin expression. Additionally, bioinformatics analysis showed that expression of UBAP2L is correlated with poor prognosis in patients with HCC. Conclusions: UBAP2L plays a critical role in maintenance of the metastatic ability of HCC cells via SNAIL1 Regulation and is predictive of a poor clinical outcome.


2020 ◽  
Vol 8 (5) ◽  
pp. 390-398
Author(s):  
Gui-Li Xu ◽  
Cai-Fang Ni ◽  
Han-Si Liang ◽  
Yun-Hua Xu ◽  
Wan-Sheng Wang ◽  
...  

Abstract Background The epithelial-to-mesenchymal transition (EMT) status is associated with programmed death-1 ligand 1 (PD-L1) expression in various cancers. However, the role and molecular mechanism of PD-L1 in the EMT of sorafenib-resistant hepatocellular carcinoma (HCC) cells remain elusive. In this study, we aimed to investigate the regulation of PD-L1 on the EMT in sorafenib-resistant HCC cells. Methods Initially, the sorafenib-resistant HCC cell lines HepG2 SR and Huh7 SR were established. Western-blot assays were used to detect the expression of PD-L1, E-cadherin, and N-cadherin. The intervention and overexpression of PD-L1 were used to explore the role of PD-L1 in the regulation of EMT in HepG2 SR and Huh7 SR cells. Cell migration and invasion were assessed by transwell assays. PD-L1 or Sterol regulatory element-binding protein 1 (SREBP-1) overexpression and knock-down were performed in order to study the mechanism of PD-L1 in sorafenib-resistant HCC cells. Results PD-L1 expression was upregulated, whereas E-cadherin levels were downregulated and N-cadherin expression was increased in HepG2 SR and Huh7 SR cells. The cell viabilities of HepG2 and Huh7 cells were lower than those of HepG2 SR and Huh7 SR cells. PD-L1 overexpression reduced E-cadherin expression and increased N-cadherin levels, whereas PD-L1 knock-down increased E-cadherin expression and decreased N-cadherin expression. PD-L1 expression promoted EMT and the migratory and invasive abilities of HepG2 SR and Huh7 SR cells. PD-L1 promoted the EMT of sorafenib-resistant HCC cells via the PI3K/Akt pathway by activating SREBP-1 expression in HepG2 SR and Huh7 SR cells. Conclusions The findings reveal that PD-L1 expression promotes EMT of sorafenib-resistant HCC cells.


2018 ◽  
Vol 47 (6) ◽  
pp. 2432-2444 ◽  
Author(s):  
Zehong Chen ◽  
Jialin Wu ◽  
Wensheng Huang ◽  
Jianjun Peng ◽  
Jinning Ye ◽  
...  

Background/Aims: Gastric cancer (GC) is a common malignancy with a global incidence that ranks fourth among all tumor types. Epithelial-to-mesenchymal transition (EMT) is a tumor biological process with a role in GC cell metastasis. Long non-coding RNAs (lncRNAs) and microRNAs possess important regulatory functions at the cellular level and in diverse pathophysiological processes. This study was conducted to investigate whether lncRNA RP11-789C1.1 regulates EMT in GC by mediating the miR-5003/E-cadherin pathway. Methods: RP11-789C1.1 and miR-5003 expression was detected in GC specimens and cell lines by quantitative real-time PCR. Western blotting and immunohistochemistry were performed to detect EMT markers in GC. Cell Counting Kit 8 assays were carried out to explore cell proliferation. Wound healing and Transwell assays were conducted to determine the migration and invasion of GC cells. To clarify the correlation between RP11-789C1.1, miR-5003, and E-cadherin, dual-luciferase reporter assays were applied. Results: LncRNA RP11-789C1.1 was significantly down-regulated in GC patients and cell lines, along with the concomitant up-regulation of miR-5003. Silencing RP11-789C1.1 and over-expressing miR-5003 significantly promoted the tumor behavior of GC cells. Dual-luciferase reporter assays confirmed that miR-5003 was the target of both RP11-789C1.1 and E-cadherin. Furthermore, at both the mRNA and protein level, silencing RP11-789C1.1 remarkably reduced the expression of E-cadherin and promoted EMT, which were reversed by knocking down miR-5003. Conclusions: LncRNA RP11-789C1.1 inhibited EMT in GC through the RP11-789C1.1/miR-5003/E-cadherin axis, which could be a promising therapeutic target for GC.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuming Zhang ◽  
Jiang Chen ◽  
Shi Jiang ◽  
Shilin He ◽  
Yanfeng Bai ◽  
...  

Background. N-Acetyltransferase 10 (NAT10) has been reported to be expressed at high levels in hepatocellular carcinoma (HCC); however, its role in chemoresistance is unclear. This study is aimed at investigating whether NAT10 regulates the epithelial-mesenchymal transition (EMT) and chemoresistance in HCC. Methods. HCC cell lines (Huh-7, Bel-7402, SNU387, and SNU449) were treated with remodelin, an inhibitor of NAT10, or transfected with small inhibitory RNAs (siRNAs) targeting NAT10 or Twist. The EMT was induced by hypoxia. The CCK-8 assay was used to quantify cell viability, the EdU incorporation assay to assess cell proliferation. siRNA knockdown efficiency and epithelial/mesenchymal marker expression were assessed by western blotting. Results. Knockdown of NAT10 using siRNA or inhibition of NAT10 using remodelin increased the sensitivity of HCC cell lines to doxorubicin; similar effects were observed in cells transfected with the Twist siRNA. Inhibition of NAT10 using remodelin also reversed the ability of doxorubicin to induce the EMT in HCC cells. Furthermore, inhibiting NAT10 reversed the hypoxia-induced EMT. Finally, we confirmed that combining doxorubicin with remodelin delayed tumor growth and reduced tumor cell proliferation in a mouse xenograft model of HCC. Conclusions. NAT10 may contribute to chemoresistance in HCC by regulating the EMT. The mechanism by which NAT10 regulates the EMT and doxorubicin sensitivity in HCC cells merits further investigation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mennatallah Elfar ◽  
Asma Amleh

miRNAs are small non-coding RNA sequences of 18-25 nucleotides. They can regulate different cellular pathways by acting on tumor suppressors, oncogenes, or both. miRNAs are mostly tissue-specific, and their expression varies depending on the cancer or the tissue in which they are found. hsa-miR-590-3p was found to be involved in several types of cancers. In this study, we identified potential downstream target genes of hsa-miR-590-3p computationally. Several bioinformatics tools and more than one approach were used to identify potential downstream target genes of hsa-miR-590-3p. CX3CL1, SOX2, N-cadherin, E-cadherin, and FOXA2 were utilized as potential downstream target genes of hsa-miR-590-3p. SNU449 and HepG2, hepatocellular carcinoma cell lines, were used to carry out various molecular techniques to further validate our in silico results. mRNA and protein expression levels of these genes were detected using RT-PCR and western blotting, respectively. Co-localization of hsa-miR-590-3p and its candidate downstream target gene, SOX2, was carried out using a miRNA in situ hybridization combined with immunohistochemistry staining through anti-SOX2. The results show that there is an inverse correlation between hsa-miR-590-3p expression and SOX2 protein expression in SNU449. Subsequently, we suggest that SOX2 can be a direct downstream target of has-miR-590-3p indicating that it may have a role in the self-renewal and self-maintenance of cancer cells. We also suggest that CX3CL1, E-cadherin, N-cadherin, and FOXA2 show a lot of potential as downstream target genes of hsa-miR-590-3p signifying its role in epithelial-mesenchymal transition. Studying the expression of hsa-miR-590-3p downstream targets can enrich our understanding of the cancer pathogenesis and how it can be used as a therapeutic tool.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroyuki Tanishima ◽  
Ting Gui ◽  
Yujing Sun ◽  
Aiko Shimokado ◽  
Takashi Ozaki ◽  
...  

Overexpression of the Snail gene transcriptional repressor promotes an epithelial-to-mesenchymal transition (EMT) in epithelial tumor cell lines. In this study, we aimed to determine the correlation between Snail protein expression and clinicopathological features and to test whether Snail can be used as a marker to distinguish gastric carcinomas from benign tissues in biopsy samples. The results of immunohistochemistry with an antibody against Snail showed that most adenocarcinomas had positive Snail expression, whereas weak Snail expression was detected in a small number of gastritis and gastric adenomas. Snail-positive cells were detected in the stroma as well as in the glandular epithelium in some adenocarcinomas. In addition to Snail immunostaining, immunostaining of the EMT-related molecules, E-cadherin and vimentin, was performed. E-cadherin was not detected in adenocarcinomas that expressed Snail, whereas gastritis and adenomas stained positively for E-cadherin. Vimentin expression was seen in adenocarcinomas with positive Snail expression, whereas gastritis and adenomas did not express vimentin. In conclusion, we propose that Snail is a useful biomarker to distinguish gastric adenocarcinomas from benign lesions in biopsy samples.


Sign in / Sign up

Export Citation Format

Share Document