The relationship of vancomycin 24-hour AUC and trough concentration

Author(s):  
David E Nix ◽  
Lisa E Davis ◽  
Kathryn R Matthias

Abstract Disclaimer In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose Prior to the 2020 release of a joint consensus guideline on monitoring of vancomycin therapy for serious methicillin-resistant Staphylococcus aureus (MRSA) infections, clinicians had escalated vancomycin doses for 2 decades while targeting trough concentrations of 15 to 20 µg/mL, leading to an increased frequency of nephrotoxicity. For MRSA infections, the 2020 guideline recommends adjusting doses to achieve a 24-hour area under the concentration-time curve (AUC) of 400 to 600 µg · h/mL; however, monitoring of trough concentrations has been entrenched for 3 decades. Calculating dose regimens based on AUC will require obtaining an increased number of vancomycin serum concentrations and, possibly, advanced software. The aim of this investigation was to determine the relationship between AUC and trough concentration and the influence of dosing regimen on goal achievement. Methods The relationship between trough concentration and AUC was explored through derivation of an equation based on a 1-compartment model and simulations. Results 24-hour AUC is related to dosing interval divided by half-life in a nonlinear fashion. The target trough concentration can be individualized to achieve a desired AUC range, and limiting use of large doses (>15-20 mg/kg) can protect against excessive 24-hour AUC with trough-only monitoring. Conclusion After initially determining pharmacokinetic parameters, subsequent monitoring of AUC can be accomplished using trough concentrations only. Trough concentration may be used as a surrogate for AUC, although the acceptable target trough concentration will vary depending on dosing interval and elimination rate constant. This work included development of an AUC-trough equation to establish a patient-specific target for steady-state trough concentration.

2018 ◽  
Vol 62 (4) ◽  
pp. e01647-17 ◽  
Author(s):  
Sheng-Hsuan Tseng ◽  
Chuan Poh Lim ◽  
Qi Chen ◽  
Cheng Cai Tang ◽  
Sing Teang Kong ◽  
...  

ABSTRACT Bacterial sepsis is a major cause of morbidity and mortality in neonates, especially those involving methicillin-resistant Staphylococcus aureus (MRSA). Guidelines by the Infectious Diseases Society of America recommend the vancomycin 24-h area under the concentration-time curve to MIC ratio (AUC24/MIC) of >400 as the best predictor of successful treatment against MRSA infections when the MIC is ≤1 mg/liter. The relationship between steady-state vancomycin trough concentrations and AUC24 values (mg·h/liter) has not been studied in an Asian neonatal population. We conducted a retrospective chart review in Singapore hospitals and collected patient characteristics and therapeutic drug monitoring data from neonates on vancomycin therapy over a 5-year period. A one-compartment population pharmacokinetic model was built from the collected data, internally validated, and then used to assess the relationship between steady-state trough concentrations and AUC24. A Monte Carlo simulation sensitivity analysis was also conducted. A total of 76 neonates with 429 vancomycin concentrations were included for analysis. Median (interquartile range) was 30 weeks (28 to 36 weeks) for postmenstrual age (PMA) and 1,043 g (811 to 1,919 g) for weight at the initiation of treatment. Vancomycin clearance was predicted by weight, PMA, and serum creatinine. For MRSA isolates with a vancomycin MIC of ≤1, our major finding was that the minimum steady-state trough concentration range predictive of achieving an AUC24/MIC of >400 was 8 to 8.9 mg/liter. Steady-state troughs within 15 to 20 mg/liter are unlikely to be necessary to achieve an AUC24/MIC of >400, whereas troughs within 10 to 14.9 mg/liter may be more appropriate.


1995 ◽  
Vol 11 (3) ◽  
pp. 105-109
Author(s):  
Thomas M Gray

Objective: To determine whether current recommendations for gentamicin dosing in full-term newborns yield a serum peak concentration of 6–7 μg/mL and a trough concentration less than 2 μg/mL in treating suspected neonatal sepsis. Design: Two-year retrospective chart review. Setting: Community hospital. Results: Sample consisted of 175 newborns with a gestational age ranging from 36 to 43 weeks and 188 sets of concentrations. Pharmacokinetic parameters were calculated using a one-compartment, first-order elimination model and were reported as follows: volume of distribution 0.59 kg/L, elimination rate constant (ke) 0.11 h−1 (half-life [t1/2] 6.8 h) at 36–37 weeks of age, with a significant change (p < 0.05) in rate constant occurring at 38–43 weeks of life, and ke 0.12 h−1 (t1/2 6.0 h) when using a two-tailed, two-sample t-test. Extrapolated mean peak concentrations were 5.8 ± 1.2 μg/mL and trough concentrations were 1.5 ± 0.5 μg/mL. Furthermore, 14% of newborns had an extrapolated trough concentration of 2.0 μg/mL or more. Conclusions: The current 2.5-mg/kg dosage is appropriate for the neonatal population studied. However, to decrease the number of potentially toxic trough concentrations, the initial dosing interval should be extended to every 18 hours for full-term neonates (>37 weeks gestation) with normal kidney function and for neonates with a gestational age of 36–37 weeks.


1996 ◽  
Vol 40 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M Dreetz ◽  
J Hamacher ◽  
J Eller ◽  
K Borner ◽  
P Koeppe ◽  
...  

The pharmacokinetics and serum bactericidal activities (SBAs) of imipenem and meropenem were investigated in a randomized crossover study. Twelve healthy male volunteers received a constant 30-min infusion of either 1 g of imipenem plus 1 g of cilastatin or 1 g of meropenem. The concentrations of the drugs in serum and urine were determined by bioassay and high-pressure liquid chromatography. Pharmacokinetic parameters were based on an open two-compartment model and a noncompartmental technique. At the end of infusion, the mean concentrations of imipenem and meropenem measured in serum were 61.2 +/- 9.8 and 51.6 +/- 6.5 mg/liter, respectively; urinary recoveries were 48.6% +/- 8.2% and 60.0% +/- 6.5% of the dose in 12 h, respectively; and the areas under the concentration-time curve from time zero to infinity were 96.1 +/- 14.4 and 70.5 +/- 10.3 mg.h/liter, respectively (P < or = 0.02). Imipenem had a mean half-life of 66.7 +/- 10.4 min; that of meropenem was 64.4 +/- 6.9 min. The volumes of distribution at steady state of imipenem and meropenem were 15.3 +/- 3.3 and 18.6 +/- 3.0 liters/70 kg, respectively, and the mean renal clearances per 1.73 m2 were 85.6 +/- 17.6 and 144.6 +/- 26.0 ml/min, respectively. Both antibiotics were well tolerated in this single-dose administration study. The SBAs were measured by the microdilution method of Reller and Stratton (L. B. Reller and C. W. Stratton, J. Infect. Dis. 136:196-204, 1977) against 40 clinically isolated strains. Mean reciprocal bactericidal titers were measured 1 and 6 h after administration. After 1 and 6 h the median SBAs for imipenem and meropenem, were 409 and 34.9 and 97.9 and 5.8, respectively, against Staphylococcus aureus, 19.9 and 4.4 and 19.4 and 4.8, respectively, against Pseudomonas aeruginosa, 34.3 and 2.2 and 232 and 15.5, respectively, against Enterobacter cloacae, and 13.4 and 2.25 and 90.7 and 7.9, respectively, against Proteus mirabilis. Both drugs had rather short biological elimination half-lives and a predominantly renal route of elimination. Both carbapenems revealed high SBAs against clinically important pathogens at 1 h; meropenem had a higher SBA against E. cloacae and P. mirabilis, and the SBA of imipenem against S. aureus was greater than the SBA of meropenem.


1997 ◽  
Vol 31 (10) ◽  
pp. 1132-1136 ◽  
Author(s):  
Syble D McClellan ◽  
Charles H Whitaker ◽  
Richard C Friedberg

OBJECTIVE: To examine the removal of vancomycin during plasmapheresis, determine whether drug administration should be withheld prior to or a supplemental dose given after the procedure, and determine whether a redistribution phenomenon in vancomycin serum concentrations occurs after plasmapheresis. DESIGN: Prospective, cohort study. SETTING: An 800-bed, tertiary-care, teaching hospital. PATIENTS: Twelve patients receiving vancomycin as prescribed who were also undergoing therapeutic plasmapheresis. METHODS: Blood samples for determination of vancomycin concentrations were obtained from each patient immediately before, during, immediately after, and 2 hours after plasmapheresis. Vancomycin concentration in plasma removed by plasmapheresis and volume of plasma removed were measured. Patient-specific pharmacokinetic parameters were determined for each patient using serum concentration data and a one-compartment model. Percent of drug removed by plasmapheresis and percent increase in vancomycin total clearance secondary to plasmapheresis were calculated. RESULTS: A mean of 6.3% of the total body store of vancomycin was removed by plasmapheresis. Vancomycin clearance during plasmapheresis averaged 1.6 L/h, which was an average increase of 285% in the total clearance of vancomycin from the body. Nine of 10 patients had a higher observed vancomycin concentration 2 hours after plasmapheresis than that predicted by degrading the concentration observed immediately after the procedure, suggesting that redistribution in serum concentrations occurs after the procedure. CONCLUSIONS: A single one-volume plasmapheresis does not remove a clinically important amount of vancomycin; therefore, supplemental dosing after the procedure is not necessary. A redistribution phenomenon in vancomycin concentrations appears to exist after plasmapheresis. Further study is needed to determine how long the redistribution phase lasts and when vancomycin concentrations should be measured after plasmapheresis.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


1989 ◽  
Vol 84 (1) ◽  
pp. 95-102 ◽  
Author(s):  
M. M. Guerra Andrade ◽  
A. C. T. Freire ◽  
D. L. Nelson

A preliminary study of the pharmacokinetic parameters of t-Butylaminoethyl disulfide was performed after administration of two different single doses (35 and 300 mg/kg) of either the cold or labelled drug. Plasma or blood samples were treated with dithiothreitol, perchloric acid, and, after filtration, submitted to further purification with anionic resein. In the final step, the drug was retained on a cationic resin column, eluted with NaCl 1M and detected according to the method of Ellman (1958). Alternatively, radioactive drug was detected by liquid scintillation counting. The results corresponding to the smaller dose of total drug suggested a pharmacokinetic behavior related to a one open compartment model with the following parameters: area under the intravenous curve (AUC i.v.):671 ± 14; AUC oral: 150 ± 40 µg.min. ml [raised to the power of -1]; elimination rate constant: 0.071 min [raised to the power of -1]; biological half life: 9.8 min; distribution volume: 0.74 ml/g. For the higher dose, the results seemed to obey a more complex undertermined model. Combining the results, the occurence of a dose-dependent pharmacokinetic behavior is suggested, the drug being rapidly absorbed and rapidly eliminated; the elimination process being related mainly to metabolization. The drug seems to be more toxic when administered I.V. because by this route it escapes first pass metabolism, while being quickly distributed to tissues. The maximum tolerated blood level seems to be around 16 µg/ml.


2004 ◽  
Vol 48 (11) ◽  
pp. 4328-4331 ◽  
Author(s):  
Robert DiCenzo ◽  
Derick Peterson ◽  
Kim Cruttenden ◽  
Gene Morse ◽  
Garret Riggs ◽  
...  

ABSTRACT Valproic acid (VPA) has the potential to benefit patients suffering from human immunodeficiency virus (HIV)-associated cognitive impairment. The purpose of this study was to determine if VPA affects the plasma concentration of efavirenz (EFV) or lopinavir. HIV type 1 (HIV-1)-infected patients receiving EFV or lopinavir-ritonavir (LPV/r) had 9 or 10 blood samples drawn over 8 to 24 h of a dosing interval at steady state before and after receiving 250 mg of VPA twice daily for 7 days. VPA blood samples drawn before (C 0) and 8 h after the morning dose (8 h) were compared to blood samples from a group of HIV-1-infected subjects who were taking either combined nucleoside reverse transcriptase inhibitors alone or had discontinued antiretroviral therapy. Pharmacokinetic parameters were calculated by noncompartmental analysis, and tests of bioequivalence were based on 90% confidence intervals (CIs) for ratios or differences. The geometric mean ratio (GMR) (90% CI) of the areas under the concentration-time curve from 0 to 24 h (AUC0-24s) of EFV (n = 11) with and without VPA was 1.00 (0.85, 1.17). The GMR (90% CI) of the AUC0-8s of LPV (n = 8) with and without VPA was 1.38 (0.98, 1.94). The differences (90% CI) in mean C 0 and 8-h VPA concentrations versus the control (n = 11) were −1.0 (−9.4, 7.4) μg/ml and −2.1 (−11.1, 6.9) μg/ml for EFV (n = 10) and −5.0 (−13.2, 3.3) μg/ml and −6.7 (−17.6, 4.2) μg/ml for LPV/r (n = 11), respectively. EFV administration alone is bioequivalent to EFV and VPA coadministration. LPV concentrations tended to be higher when the drug was combined with VPA. Results of VPA comparisons fail to raise concern that coadministration with EFV or LPV/r will significantly influence trough concentrations of VPA.


2002 ◽  
Vol 46 (5) ◽  
pp. 1475-1480 ◽  
Author(s):  
John E. Conte ◽  
Jeffrey A. Golden ◽  
Juliana Kipps ◽  
Elisabeth Zurlinden

ABSTRACT In this study, our objective was to determine the steady-state intrapulmonary concentrations and pharmacokinetic parameters of orally administered linezolid in healthy volunteers. Linezolid (600 mg every 12 h for a total of five doses) was administered orally to 25 healthy adult male subjects. Each subgroup contained five subjects, who underwent bronchoscopy and bronchoalveolar lavage (BAL) 4, 8, 12, 24, or 48 h after administration of the last dose. Blood was obtained for drug assay prior to administration of the first dose and fifth dose and at the completion of bronchoscopy and BAL. Standardized bronchoscopy was performed without systemic sedation. The volume of epithelial lining fluid (ELF) recovered was calculated by the urea dilution method, and the total number of alveolar cells (AC) was counted in a hemocytometer after cytocentrifugation. Linezolid was measured in plasma by a high-pressure liquid chromatography (HPLC) technique and in BAL specimens and AC by a combined HPLC-mass spectrometry technique. Areas under the concentration-time curves (AUCs) for linezolid in plasma, ELF, and AC were derived by noncompartmental analysis. Half-lives for linezolid in plasma, ELF, and AC were calculated from the elimination rate constants derived from a monoexponential fit of the means of the observed concentrations at each time point. Concentrations (means ± standard deviations) in plasma, ELF, and AC, respectively, were 7.3 ± 4.9, 64.3 ± 33.1, and 2.2 ± 0.6 μg/ml at the 4-h BAL time point and 7.6 ± 1.7, 24.3 ± 13.3, and 1.4 ± 1.3 μg/ml at the 12-h BAL time point. Linezolid concentrations in plasma, ELF, and AC declined monoexponentially, with half-lives of 6.9, 7.0, and 5.7 h, respectively. For a MIC of 4, the 12-h plasma AUC/MIC and maximum concentration/MIC ratios were 34.6 and 3.9, respectively, and the percentage of time the drug remained above the MIC for the 12-h dosing interval was 100%; the corresponding ratios in ELF were 120 and 16.1, respectively, and the percentage of time the drug remained above the MIC was 100%. The long plasma and intrapulmonary linezolid half-lives and the percentage of time spent above the MIC of 100% of the dosing interval provide a pharmacokinetic rationale for drug administration every 12 h and indicate that linezolid is likely to be an effective agent for the treatment of pulmonary infections.


2012 ◽  
Vol 51 (05) ◽  
pp. 383-394 ◽  
Author(s):  
M. Fukumoto ◽  
L. Bax ◽  
A. Kohno ◽  
Y. Morishita ◽  
H. Tsuruta

SummaryBackground: Over 100 limited sampling strategies (LSSs) have been proposed to reduce the number of blood samples necessary to estimate the area under the concentration-time curve (AUC). The conditions under which these strategies succeed or fail remain to be clarified.Objectives: We investigated the accuracy of existing LSSs both theoretically and numerically by Monte Carlo simulation. We also proposed two new methods for more accurate AUC estimations.Methods: We evaluated the following existing methods theoretically: i) nonlinear curve fitting algorithm (NLF), ii) the trapezium rule with exponential curve approximation (TZE), and iii) multiple linear regression (MLR). Taking busulfan (BU) as a test drug, we generated a set of theoretical concentration-time curves based on the identified distribution of pharmacokinetic parameters of BU and re-evaluated the existing LSSs using these virtual validation profiles. Based on the evaluation results, we improved the TZE so that unrealistic parameter values were not used. We also proposed a new estimation method in which the most likely curve was selected from a set of pre-generated theoretical concentration-time curves.Results: Our evaluation, based on clinical profiles and a virtual validation set, revealed: i) NLF sometimes overestimated the absorption rate constant Ka, ii) TZE overestimated AUC over 280% when Ka is small, and iii) MLR underestimated AUC over 30% when the elimination rate constant Ke is small. These results were consistent with our mathematical evaluations for these methods. In contrast, our two new methods had little bias and good precision.Conclusions: Our investigation revealed that existing LSSs induce different but specific biases in the estimation of AUC. Our two new LSSs, a modified TZE and one using model concentration-time curves, provided accurate and precise estimations of AUC.


1998 ◽  
Vol 85 (2) ◽  
pp. 653-666 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Steven C. George

The relatively recent detection of nitric oxide (NO) in the exhaled breath has prompted a great deal of experimentation in an effort to understand the pulmonary exchange dynamics. There has been very little progress in theoretical studies to assist in the interpretation of the experimental results. We have developed a two-compartment model of the lungs in an effort to explain several fundamental experimental observations. The model consists of a nonexpansile compartment representing the conducting airways and an expansile compartment representing the alveolar region of the lungs. Each compartment is surrounded by a layer of tissue that is capable of producing and consuming NO. Beyond the tissue barrier in each compartment is a layer of blood representing the bronchial circulation or the pulmonary circulation, which are both considered an infinite sink for NO. All parameters were estimated from data in the literature, including the production rates of NO in the tissue layers, which were estimated from experimental plots of the elimination rate of NO at end exhalation (ENO) vs. the exhalation flow rate (V˙E). The model is able to simulate the shape of the NO exhalation profile and to successfully simulate the following experimental features of endogenous NO exchange: 1) an inverse relationship between exhaled NO concentration and V˙E, 2) the dynamic relationship between the phase III slope andV˙E, and 3) the positive relationship between ENO andV˙E. The model predicts that these relationships can be explained by significant contributions of NO in the exhaled breath from the nonexpansile airways and the expansile alveoli. In addition, the model predicts that the relationship between ENO and V˙E can be used as an index of the relative contributions of the airways and the alveoli to exhaled NO.


Sign in / Sign up

Export Citation Format

Share Document