Ethanol-Induced Neuronal and Cognitive/Emotional Impairments are Accompanied by Down-Regulated NT3-TrkC-ERK in Hippocampus

Author(s):  
Xiaomeng Qiao ◽  
Mizhu Sun ◽  
Yuanyuan Chen ◽  
Wenyang Jin ◽  
Huan Zhao ◽  
...  

Abstract Aims Ethanol ingestion affects cognition and emotion, which have been attributed to the dysfunction of specific brain structures. Studies of alcoholic patients and animal models consistently identify reduced hippocampal mass as a key ethanol-induced brain adaptation. This study evaluated how neuroadaptation in the hippocampus (Hip) produced by ethanol contributed to related behavioral deficits in male and female rats. Methods Effects of acute, short-term and long-term ethanol exposure on the anxiety-like behavior and recognition memory on adult male and female Sprague–Dawley rats were assessed using elevated plus maze test and novel object recognition test, respectively. In addition, in order to investigate the direct effect of ethanol on hippocampal neurons, primary culture of hippocampal neurons was exposed to ethanol (10, 30 and 90 mM; 1, 24 and 48 h), and viability (CCK-8) and morphology (immunocytochemistry) were analyzed at structural levels. Western blot assays were used to assess protein levels of NT3-TrkC-ERK. Results Acute and short-term ethanol exposure exerted anxiolytic effects, whereas long-term ethanol exposure induced anxiogenic responses in both sexes. Short-term ethanol exposure impaired spatial memory only in female rats, whereas long-term ethanol exposure impaired spatial and recognition memory in both sexes. These behavioral impairments and ethanol-induced loss of hippocampal neurons and decreased cell viability were accompanied by downregulated NT3-TrkC-ERK pathway. Conclusion These results indicate that NT3-TrkC-ERK signaling in the Hip may play an important role in ethanol-induced structural and behavioral impairments.

2020 ◽  
Vol 10 (12) ◽  
pp. 900
Author(s):  
Antoniette M. Maldonado-Devincci ◽  
Cheryl L. Kirstein

Early alcohol use is a major concern due to the dramatic rise in alcohol use during adolescence. In humans, adolescent males and females consume alcohol at equivalent rates; however, in adulthood males are more likely to consume harmful levels of alcohol. In animal models, the long-term dose-dependent and sex-dependent effects of alcohol exposure during adolescence have not been readily assessed relative to exposure that is initiated in adulthood. The purpose of the present set of experiments was to determine if adolescent exposure to chronic ethanol would predispose male and female rats to greater ethanol intake in adulthood when compared to animals that were not exposed to chronic ethanol exposure until early adulthood. Male and female rats were chronically administered 0.75 g/kg or 1.5 g/kg ethanol or saline for 21 days during adolescence (postnatal day (PND) 30–50) or adulthood (PND 60–80). All rats subsequently underwent 14-days of abstinence (PND 51–64 or PND 81–94, respectively). Finally, all rats were given 30-min daily access to saccharin-sweetened ethanol or saccharin alone from PND 65–80 for adolescent-exposed rats and PND 95–110 for adult-exposed rats. Exposure to 0.75 g/kg ethanol did not alter ethanol or saccharin intake in adolescent-exposed or adult-exposed rats, regardless of sex. In contrast, chronic exposure to the higher 1.5 g/kg dose during adolescence increased ethanol intake in adulthood in female rats. However, there was no change in saccharin intake in animals exposed to 1.5 g/kg ethanol during adolescence or adulthood, regardless of sex. Additionally, there were no clear age- and ethanol-dependent changes in duration of loss of righting reflex and blood ethanol concentrations to a challenge administration of a higher dose of ethanol. The results of the present set of experiments indicate chronic exposure to a high dose of ethanol during adolescence in female rats did indeed predispose rats to consume more ethanol in adulthood. Given that these effects were only observed in adolescent-exposed female rats, these results support a unique vulnerability to the long-term consequences of adolescent ethanol exposure in female rats, an effect that is not merely mediated by the sweetener used in the ethanol solution.


1993 ◽  
Vol 75 (3) ◽  
pp. 1140-1149 ◽  
Author(s):  
D. J. Prezant ◽  
D. E. Valentine ◽  
E. I. Gentry ◽  
B. Richner ◽  
J. Cahill ◽  
...  

The effects of short-term (2.5 wk) and long-term (10 wk) testosterone propionate (2.5 mg/day; 5 days/wk) treatment on diaphragm contractility, fatigue resistance, and fiber type proportions were studied in male and female rats. Contractility and fatigue resistance indexes were measured in an in vitro diaphragm costal strip preparation by direct stimulation at 37 degrees C. The fatigue paradigm consisted of 30 trains/min at 5 Hz (50% duty cycle) for 10 min. Fatigue resistance indexes were calculated as postfatigue divided by baseline forces. In females but not males, testosterone treatment produced significant increases in body weight, costal diaphragm weight, and contractility and significant decreases in fatigue resistance indexes. The interaction between testosterone treatment and the duration of treatment was significant, with the increase in contractility (females) being significant after short-term but not long-term treatment. No significant difference in fiber type proportions or areas was observed, regardless of treatment duration or the preexperimental, basal circulating level of androgen.


1986 ◽  
Vol 110 (2) ◽  
pp. 367-373 ◽  
Author(s):  
N. G. Weiland ◽  
C. A. Barraclough ◽  
K. J. Catt

ABSTRACT Considerable differences have previously been found in the hypothalamo-hypophysial responsiveness to oestrogen, depending upon the time between gonad removal and exposure to oestrogen. In the present study a detailed analysis was made of some of the differences which may exist in pituitary LH-releasing hormone (LHRH) receptors and the amount of LH released in response to electrochemical depolarization of the medial preoptic area after 2 or 7 days of oestradiol treatment of long- and short-term gonadectomized male and female rats. The pituitary glands of long-term gonadectomized males and females secreted more LH in response to two pulse injections of LHRH than did short-term gonadectomized rats. The amount of LH released on day 2, however, was equivalent to that secreted after 7 days of oestradiol treatment. Moreover, long-term gonadectomized males and females had equivalent LHRH receptor concentrations, which were greater than those of short-term gonadectomized animals. Peak serum LH concentrations observed after preoptic stimulation were equivalent in short- and long-term castrated rats after 2 days of oestrogen exposure. Serum LH concentrations following preoptic stimulation in short-term gonadectomized males and females were significantly greater on day 7 than on day 2 of oestradiol treatment, whereas in long-term gonadectomized animals the stimulated release of LH was equivalent both in magnitude and time of peak release on both days. These studies demonstrate that the differential effects of oestradiol on LH release on day 2 (no negative feedback) compared with day 7 (both negative and positive feedback exist) are not due to differences in the ability of the pituitary gland to release LH in response to LHRH, nor in the releasable pools of hypothalamic LHRH in long-term gonadectomized rats. Rather, they seem to be due to a refractoriness in some unidentified central nervous process which regulates tonic LH release in gonadectomized rats. J. Endocr. (1986) 110, 367–373


2021 ◽  
pp. 074823372110105
Author(s):  
Roberta Tassinari ◽  
Andrea Martinelli ◽  
Mauro Valeri ◽  
Francesca Maranghi

Synthetic amorphous silica (SAS) nanomaterial – consisting of aggregates and agglomerates of primary silicon dioxide (SiO2) particles in the nanorange (<100 nm) – is commonly used as excipient in pharmaceuticals, in cosmetics and as food additive (E551). The available data suggest that SAS nanoparticles (NP) after intravenous (IV) exposure persist in liver and spleen; however, insufficient data exist to verify whether SAS may also induce adverse effects. The aim of the present study was to verify the potential long-term effects of SAS NP (NM-203) on spleen and liver as target organs following short-term exposure. Adult male and female Sprague-Dawley rats were treated by IV injection in the tail vein with a single (1-day) dose (SD) and repeated (5-day) doses (RD) of 20 mg/kg bw per day of SAS dispersed in sterile saline solution as vehicle. Histopathological examinations of target organs were performed after 90 days. Tissue biodistribution and full characterization of NM-203, primary particle size 13–45 nm, was performed within the framework of the Nanogenotox project. No mortality or general toxicity occurred; histopathological analysis showed splenomegaly in the RD group accompanied by inflammatory granulomas in both sexes. Granulomas were also present in liver parenchyma in the RD (both sexes) and SD groups (male only). The histopathological results indicated that SAS NP have the potential to persist and induce sex-specific chronic inflammatory lesions in spleen and liver upon short-term treatment. Overall, the data showed that the widespread use of silica in drugs might elicit chronic reactions in spleen and liver prompting to the need of further investigations on the safety of SAS NP.


2002 ◽  
Vol 22 (2) ◽  
pp. 183-195 ◽  
Author(s):  
Aigang Lu ◽  
Rui-qiong Ran ◽  
Joseph Clark ◽  
Melinda Reilly ◽  
Alex Nee ◽  
...  

Estradiol reduces brain injury from many diseases, including stroke and trauma. To investigate the molecular mechanisms of this protection, the effects of 17-β-estradiol on heat shock protein (HSP) expression were studied in normal male and female rats and in male gerbils after global ischemia. 17-β-Estradiol was given intraperitoneally (46 or 460 ng/kg, or 4.6 μg/kg) and Western blots performed for HSPs. 17-β-Estradiol increased hemeoxygenase-1, HSP25/27, and HSP70 in the brain of male and female rats. Six hours after the administration of 17-β-estradiol, hemeoxygenase-1 increased 3.9-fold (460 ng/kg) and 5.4-fold (4.6 μg/kg), HSP25/27 increased 2.1-fold (4.6 μg/kg), and Hsp70 increased 2.3-fold (460 ng/kg). Immunocytochemistry showed that hemeoxygenase-1, HSP25/27,and HSP70 induction was localized to cerebral arteries in male rats, possibly in vascular smooth muscle cells. 17-β-Estradiol was injected intraperitoneally 20 minutes before transient occlusion of both carotids in adult gerbils. Six hours after global cerebral ischemia, 17-β-estradiol (460 ng/kg) increased levels of hemeoxygenase-1 protein 2.4-fold compared with ischemia alone, and HSP25/27 levels increased 1.8-fold compared with ischemia alone. Hemeoxygenase-1 was induced in striatal oligodendrocytes and hippocampal neurons, and HSP25/27 levels increased in striatal astrocytes and hippocampal neurons. Finally, Western blot analysis confirmed that estrogen induced heat shock factor-1, providing a possible mechanism by which estrogen induces HSPs in brain and other tissues. The induction of HSPs may be an important mechanism for estrogen protection against cerebral ischemia and other types of injury.


2019 ◽  
Vol 70 (2) ◽  
pp. 130-133
Author(s):  
L.I. Bugaeva ◽  
◽  
V.V. Bagmetova ◽  
Yu.V. Markina ◽  
A.A. Kolmakov ◽  
...  

2021 ◽  
Vol 45 (2) ◽  
pp. 14-20
Author(s):  
Omar H Azeez

Aspartame (ASP) is a sugar substitute. Its use rose because it has been demonstrated to have deleterious effects after being metabolized. In the presence of antioxidant vitamins C or E, the effects of ASP on reproductive hormones of adult male and female Albino Wister rats were investigated. A total of eighty male and female rats were used in this study. The rats were divided into four groups: group 1, received no treatment; group 2, received ASP at 40 mg/kg BW; group 3, received ASP at 40 mg/kg BW with vitamin C at 150 mg/kg BW; and group 4, received ASP at 40 mg/kg BW and vitamin E at 100 mg/kg BW. All treatments were given orally by gavage needle once daily for consecutive 90 days. The levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone hormone (TH) were measured after 90 days in blood plasma. In comparison with the control group, ASP treatment resulted in lower levels of E2, FSH, and LH in male and female rats. When the antioxidants vitamin C or E was given, the effects of ASP were reversed, and the levels of E2, LH, and FSH were increased. The testosterone hormone was likewise significantly increased by ASP, but testosterone hormone concentrations were decreased by vitamin C or E treatments. Long-term ASP consumption caused interfering with testicular and ovarian hormonal activity, while vitamins C and E on the other hand, overcome longstanding consumption ASP's effects.


1976 ◽  
Vol 71 (1) ◽  
pp. 109-114 ◽  
Author(s):  
I. DONIACH ◽  
D. J. SHALE

SUMMARY From the differences in radiation profiles between 131I and 125I isotopes of iodine it would be expected that they would show different effects on thyroid function. The differences should lead to lower rates of thyroid gland destruction with 125I and hence less post-irradiation hypothyroidism. This difference in biological effect has been demonstrated in rats by indirect assessment of thyroid function. In this report the long-term effects of a range of similar doses of 131I and 125I were compared, in male and female rats, by direct assessment of thyroid function. Seventeen months after receiving 25 and 125 μCi of 131I, male and female rats showed significant elevation of serum TSH concentration and a reduction in 3 h radioiodine uptake. Rats receiving 1 and 5 μCi of 131I and all doses of 125I showed no significant changes in thyroid function. These findings confirm the previously reported differences in effect between the 131I and 125I isotopes of iodine in the rat.


Sign in / Sign up

Export Citation Format

Share Document