scholarly journals Gene transfer across species boundaries in bryophytes: evidence from major life cycle stages in Homalothecium lutescens and H. sericeum

2019 ◽  
Vol 125 (4) ◽  
pp. 565-579 ◽  
Author(s):  
W Sawangproh ◽  
L Hedenäs ◽  
A S Lang ◽  
B Hansson ◽  
N Cronberg

Abstract Background and Aims The mosses Homalothecium lutescens and H. sericeum are genetically, morphologically and ecologically differentiated; mixed populations sometimes occur. In sympatric populations, intermediate character states among gametophytes and sporophytes have been observed, suggesting hybridization and introgression in such populations. Methods We determined genotypes using bi-allelic co-dominant single nucleotide polymorphism (SNP) markers, specific to either H. lutescens or H. sericeum, to estimate the degree of genetic mixing in 449 moss samples collected from seven sympatric and five allopatric populations on the island of Öland, south Sweden. The samples represented three generations: haploid maternal gametophytes; diploid sporophytes; and haploid sporelings. Key Results Admixture analyses of SNP genotypes identified a majority as pure H. lutescens or H. sericeum, but 76 samples were identified as mildly admixed (17 %) and 17 samples (3.8 %) as strongly admixed. Admixed samples were represented in all three generations in several populations. Hybridization and introgression were bidirectional. Conclusions Our results demonstrate that admixed genomes are transferred between the generations, so that the populations behave as true hybrid zones. Earlier studies of sympatric bryophyte populations with admixed individuals have not been able to show that admixed alleles are transferred beyond the first generation. The presence of true hybrid zones has strong evolutionary implications because genetic material transferred across species boundaries can be directly exposed to selection in the long-lived haploid generation of the bryophyte life cycle, and contribute to local adaptation, long-term survival and speciation.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3017 ◽  
Author(s):  
Luisa Berná ◽  
Maria Laura Chiribao ◽  
Gonzalo Greif ◽  
Matias Rodriguez ◽  
Fernando Alvarez-Valin ◽  
...  

American trypanosomiasis is a chronic and endemic disease which affects millions of people.Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages ofT. cruzi, amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity ofT. cruzito adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vector, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also a general down-regulation of surface glycoproteins was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, an also express a specific subset of surface glycoproteins coding genes. In addition, these results allowed us to improve the annotation of Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions.


Zootaxa ◽  
2021 ◽  
Vol 4910 (1) ◽  
pp. 1-92
Author(s):  
JEFFREY A. COLE ◽  
DAVID B. WEISSMAN ◽  
DAVID C. LIGHTFOOT ◽  
NORIHIRO UESHIMA ◽  
ELŻBIETA WARCHAŁOWSKA-ŚLIWA ◽  
...  

The Nearctic shield-back katydid genus Neduba is revised. Species boundaries were demarcated by molecular phylogenetic analysis, morphology, quantitative analysis of calling songs, and karyotypes. Nine previously described species are redescribed: N. carinata, N. castanea, N. convexa, N. diabolica, N. extincta, N. macneilli, N. propsti, N. sierranus, and N. steindachneri, and twelve new species are described: N. ambagiosa sp. n., N. arborea sp. n., N. cascadia sp. n., N. duplocantans sp. n., N. inversa sp. n., N. longiplutea sp. n., N. lucubrata sp. n., N. oblongata sp. n., N. prorocantans sp. n., N. radicata sp. n., N. radocantans sp. n., and N. sequoia sp. n. We chose a lectotype for N. steindachneri and transferred N. picturata from a junior synonym of N. diabolica to a junior synonym of N. steindachneri. Diversification in this relict group reflects cycles of allopatric isolation and secondary contact amidst the tumultuous, evolving geography of western North America. The taxonomy and phylogenies presented in this revision lay the groundwork for studies of speciation, biogeography, hybrid zones, and behavioral evolution. Given that one Neduba species is already extinct from human environmental disturbance, we suggest conservation priorities for the genus. 


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


2019 ◽  
Vol 201 (17) ◽  
Author(s):  
Elisa D. Hughes ◽  
Brenda G. Byrne ◽  
Michele S. Swanson

ABSTRACTDuring its life cycle, the environmental pathogenLegionella pneumophilaalternates between a replicative and transmissive cell type when cultured in broth, macrophages, or amoebae. Within a protozoan host,L. pneumophilafurther differentiates into the hardy cell type known as the mature infectious form (MIF). The second messenger cyclic di-GMP coordinates lifestyle changes in many bacterial species, but its role in theL. pneumophilalife cycle is less understood. Using anin vitrobroth culture model that approximates the intracellular transition from the replicative to the transmissive form, here we investigate the contribution toL. pneumophiladifferentiation of a two-component system (TCS) that regulates cyclic di-GMP metabolism. The TCS is encoded bylpg0278-lpg0277and is cotranscribed withlpg0279, which encodes a protein upregulated in MIF cells. The promoter for this operon is RpoS dependent and induced in nutrient-limiting conditions that do not support replication, as demonstrated using agfpreporter and quantitative PCR (qPCR). The response regulator of the TCS (Lpg0277) is a bifunctional enzyme that both synthesizes and degrades cyclic di-GMP. Using a panel of site-directed point mutants, we show that cyclic di-GMP synthesis mediated by a conserved GGDEF domain promotes growth arrest of replicativeL. pneumophila, accumulation of pigment and poly-3-hydroxybutyrate storage granules, and viability in nutrient-limiting conditions. Genetic epistasis tests predict that the MIF protein Lpg0279 acts as a negative regulator of the TCS. Thus,L. pneumophilais equipped with a regulatory network in which cyclic di-GMP stimulates the switch from a replicative to a resilient state equipped to survive in low-nutrient environments.IMPORTANCEAlthough an intracellular pathogen,L. pneumophilahas developed mechanisms to ensure long-term survival in low-nutrient aqueous conditions. Eradication ofL. pneumophilafrom contaminated water supplies has proven challenging, as outbreaks have been traced to previously remediated systems. Understanding the genetic determinants that supportL. pneumophilapersistence in low-nutrient environments can inform design and assessment of remediation strategies. Here we characterize a genetic locus that encodes a two-component signaling system (lpg0278-lpg0277) and a putative regulator protein (lpg0279) that modulates the production of the messenger molecule cyclic di-GMP. We show that this locus promotes bothL. pneumophilacell differentiation and survival in nutrient-limiting conditions, thus advancing the understanding of the mechanisms that contribute toL. pneumophilaenvironmental resilience.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
Author(s):  
Todd A Minning ◽  
D Brent Weatherly ◽  
James Atwood ◽  
Ron Orlando ◽  
Rick L Tarleton

1981 ◽  
Vol 71 (1) ◽  
pp. 129-132 ◽  
Author(s):  
Nancy Lorimer

A population of Aedes aegypti (L.) near the Kenya coast was monitored for nearly a year after a genetic control experiment. Two genetic markers that were carried by released males but unknown to the region persisted in the population during the entire period of observation. The endurance of introduced genetic material in a natural population is an important step toward the use of genetic control in insect management.


2009 ◽  
Vol 75 (6) ◽  
pp. 1581-1588 ◽  
Author(s):  
Jia Wen ◽  
Ramaswamy C. Anantheswaran ◽  
Stephen J. Knabel

ABSTRACT Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes were investigated. For part 1 of this analysis, L. monocytogenes ATCC 19115 was grown to log, stationary, death, and long-term-survival phases at 35°C in tryptic soy broth with yeast extract (TSBYE). Cells were diluted in whole milk that had been subjected to ultrahigh temperatures (UHT whole milk) and then high-pressure processed (HPP) at 400 MPa for 180 s or thermally processed at 62.8°C for 30 s. As cells transitioned from the log to the long-term-survival phase, the D400 MPa and D62.8°C values increased 10- and 19-fold, respectively. Cells decreased in size as they transitioned from the log to the long-term-survival phase. Rod-shaped cells transitioned to cocci as they entered the late-death and long-term-survival phases. L. monocytogenes strains F5069 and Scott A showed similar results. For part 2 of the analysis, cells in long-term-survival phase were centrifuged, suspended in fresh TSBYE, and incubated at 35°C. As cells transitioned from the long-term-survival phase to log and the stationary phase, they increased in size and log reductions increased following HPP or heat treatment. In part 3 of this analysis, cells in long-term-survival phase were centrifuged, suspended in UHT whole milk, and incubated at 4°C. After HPP or heat treatment, similar results were observed as for part 2. We hypothesize that cells of L. monocytogenes enter a dormant, long-term-survival phase and become more barotolerant and thermotolerant due to cytoplasmic condensation when they transition from rods to cocci. Further research is needed to test this hypothesis and to determine the practical significance of these findings.


Parasitology ◽  
1967 ◽  
Vol 57 (2) ◽  
pp. 351-361 ◽  
Author(s):  
P. L. Long

E. praeox has been isolated in Britain for the first time and is similar in regard to its oocyst size, prepatent time, life-cycle and the development of host immunity to the reports of Tyzzer et al. (1932). Oocysts had mean dimensions of 20·4 × 17·45 μm and the first oocysts were discharged 83½ h after infection.Oocyst production and life-cycle studies suggest that at least three generations of schizogony precede gametogony and that at least one further generation of schizogony is needed to explain the oocyst reproduction resulting from a small dose of oocysts. Young chickens 1½–3 weeks of age were not such suitable hosts as older chickens (6 weeks) and the reproduction of the parasite was seriously reduced when large numbers (e.g. 105, 106) were used to infect chickens. A high degree of resistance to reinfection occurred after a single exposure to infection.Sporozoite infections of the caeca or cloaca resulted in the infection of the usual small intestine site; there was no development at the site of inoculation and attempts to infect the embryo allantois did not succeed.I wish to thank Dr M. Elaine Rose for the surgery required for the caecal infections, for her interest throughout and for help with the manuscript; Dr R. F. Gordon for help with the manuscript and permission to publish and Mr B. J. Millard for skilled technical assistance.


2019 ◽  
Author(s):  
Elisa D. Hughes ◽  
Brenda G. Byrne ◽  
Michele S. Swanson

ABSTRACTDuring its life cycle, the environmental pathogenLegionella pneumophilaalternates between a replicative and a transmissive cell type when cultured in broth, macrophages, or amoebae. Within a protozoan host,L. pneumophilafurther differentiates into the hardy cell type known as the Mature Infectious Form (MIF). The second messenger cyclic-di-GMP coordinates lifestyle changes in many bacterial species, but its role in theL. pneumophilalife cycle is less understood. Using anin vitrobroth culture model that approximates the intracellular transition from the replicative to transmissive form, here we investigate the contribution toL. pneumophiladifferentiation of a two-component system (TCS) that regulates cyclic-di-GMP metabolism. The TCS is encoded bylpg0278-lpg0277and is co-transcribed withlpg0279, which encodes a protein upregulated in MIF cells. Using agfp-reporter, we demonstrate that the promoter for this operon is RpoS-dependent and induced in nutrient-limiting conditions that do not support replication. The response regulator of the TCS (Lpg0277) is a bifunctional enzyme that both synthesizes and degrades cyclic-di-GMP. Using a panel of site-directed point mutants, we show that cyclic-di-GMP synthesis mediated by a conserved GGDEF domain promotes growth arrest of replicativeL. pneumophila, production of pigment and poly-3-hydroxybutyrate storage granules, and viability in nutrient-limiting conditions. Genetic epistasis tests predict that the MIF protein Lpg0279 acts upstream of the TCS as a negative regulator. Thus,L. pneumophilais equipped with a regulatory network in which cyclic-di-GMP stimulates the switch from a replicative to a resilient state equipped to survive in low-nutrient environments.IMPORTANCEAlthough an intracellular pathogen,L. pneumophilahas developed mechanisms to ensure long-term survival in low-nutrient aqueous conditions. Eradication ofL. pneumophilafrom contaminated water supplies has proven challenging, as outbreaks have been traced to previously remediated systems. Understanding the genetic determinants that supportL. pneumophilapersistence in low-nutrient environments can inform design of remediation methods. Here we characterize a genetic locus that encodes a two-component signaling system (lpg0278-lpg0277) and a putative regulator protein (lpg0279) that modulates production of the messenger molecule cyclic-di-GMP. We show that this locus promotes bothL. pneumophilacell differentiation and survival in nutrient-limiting conditions, thus advancing our understanding of the mechanisms that contribute toL. pneumophilaenvironmental resilience.


Sign in / Sign up

Export Citation Format

Share Document