Flavonoids and saponins in plant rhizospheres: roles, dynamics, and the potential for agriculture

Author(s):  
Akifumi Sugiyama

Abstract Plants are in constant interaction with a myriad of soil microorganisms in the rhizosphere, an area of soil in close contact with plant roots. Recent research has highlighted the importance of plant specialized metabolites (PSMs) in shaping and modulating the rhizosphere microbiota; however, the molecular mechanisms underlying the establishment and function of the microbiota mostly remain unaddressed. Flavonoids and saponins are a group of PSMs whose biosynthetic pathways have largely been revealed. Although these PSMs are abundantly secreted into the rhizosphere and exert various functions, the secretion mechanisms have not been clarified. This review summarizes the roles of flavonoids and saponins in the rhizosphere with a special focus on interactions between plants and the rhizosphere microbiota. Furthermore, this review introduces recent advancements in the dynamics of these metabolites in the rhizosphere and indicates potential applications of PSMs for crop production and discusses perspectives in this emerging research field.

2019 ◽  
Vol 20 (13) ◽  
pp. 3169 ◽  
Author(s):  
Rosario Haro ◽  
Begoña Benito

K+ is an essential cation and the most abundant in plant cells. After N, its corresponding element, K, is the nutrient required in the largest amounts by plants. Despite the numerous roles of K in crop production, improvements in the uptake and efficiency of use of K have not been major focuses in conventional or transgenic breeding studies in the past. In research on the mineral nutrition of plants in general, and K in particular, this nutrient has been shown to be essential to soil-dwelling-microorganisms (fungi, bacteria, protozoa, nematodes, etc.) that form mutualistic associations and that can influence the availability of mineral nutrients for plants. Therefore, this article aims to provide an overview of the role of soil microorganisms in supplying K+ to plants, considering both the potassium-solubilizing microorganisms and the potassium-facilitating microorganisms that are in close contact with the roots of plants. These microorganisms can influence the active transporter-mediated transfer of K+. Regarding the latter group of microorganisms, special focus is placed on the role of endophytic fungus. This review also includes a discussion on productivity through sustainable agriculture.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1333 ◽  
Author(s):  
K. Ingemar Jönsson

Tardigrades represent a phylum of very small aquatic animals in which many species have evolved adaptations to survive under extreme environmental conditions, such as desiccation and freezing. Studies on several species have documented that tardigrades also belong to the most radiation-tolerant animals on Earth. This paper gives an overview of our current knowledge on radiation tolerance of tardigrades, with respect to dose-responses, developmental stages, and different radiation sources. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unknown, but omics studies suggest that both mechanisms related to the avoidance of DNA damage and mechanisms of DNA repair are involved. The potential of tardigrades to provide knowledge of importance for medical sciences has long been recognized, but it is not until recently that more apparent evidence of such potential has appeared. Recent studies show that stress-related tardigrade genes may be transfected to human cells and provide increased tolerance to osmotic stress and ionizing radiation. With the recent sequencing of the tardigrade genome, more studies applying tardigrade omics to relevant aspects of human medicine are expected. In particular, the cancer research field has potential to learn from studies on tardigrades about molecular mechanisms evolved to maintain genome integrity.


Author(s):  
Xiangyuan Pu ◽  
Luping Du ◽  
Yanhua Hu ◽  
Ye Fan ◽  
Qingbo Xu

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by endothelial dysfunction and vascular remodeling. Despite significant advancement in our understanding of the pathogenesis of PAH in recent years, treatment options for PAH are limited and their prognosis remains poor. PAH is now seen as a severe pulmonary arterial vasculopathy with structural changes driven by excessive vascular proliferation and inflammation. Perturbations of a number of cellular and molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, underscoring the complexity of the disease pathogenesis. Interestingly, emerging evidence suggest that stem/progenitor cells may have an impact on disease development and therapy. In preclinical studies, stem/progenitor cells displayed an ability to promote endothelial repair of dysfunctional arteries and induce neovascularization. The stem cell-based therapy for PAH are now under active investigation. This review article will briefly summarize the updates in the research field, with a special focus on the contribution of stem/progenitor cells to lesion formation via influencing vascular cell functions and highlight the potential clinical application of stem/progenitor cell therapy to PAH.


2020 ◽  
Author(s):  
Virginia Lioy ◽  
Jean-Noël Lorenzi ◽  
Soumaya Najah ◽  
Thibault Poinsignon ◽  
Hervé Leh ◽  
...  

AbstractStreptomyces are among the most prolific bacterial producers of specialized metabolites, including antibiotics. The linear chromosome is partitioned into a central region harboring core genes and two extremities enriched in specialized metabolite biosynthetic gene clusters (SMBGCs). The molecular mechanisms governing structure and function of these compartmentalized genomes remain mostly unknown. Here we show that in exponential phase, chromosome structure correlates with genetic compartmentalization: conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends are transcriptionally, largely quiescent compartments with different structural features. Onset of metabolic differentiation is accompanied by remodeling of chromosome architecture from an ‘open’ to a rather ‘closed’ conformation, in which the SMBGCs are expressed forming new boundaries. Altogether, our results reveal that S. ambofaciens’ linear chromosome is partitioned into structurally distinct entities, indicating a link between chromosome folding, gene expression and genome evolution.


ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142096268
Author(s):  
Veronica T. Cheli ◽  
J. Correale ◽  
Pablo M. Paez ◽  
Juana M. Pasquini

Iron is a key nutrient for normal central nervous system (CNS) development and function; thus, iron deficiency as well as iron excess may result in harmful effects in the CNS. Oligodendrocytes and astrocytes are crucial players in brain iron equilibrium. However, the mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes during CNS development or under pathological situations such as demyelination are not completely understood. In the CNS, iron is directly required for myelin production as a cofactor for enzymes involved in ATP, cholesterol and lipid synthesis, and oligodendrocytes are the cells with the highest iron levels in the brain which is linked to their elevated metabolic needs associated with the process of myelination. Unlike oligodendrocytes, astrocytes do not have a high metabolic requirement for iron. However, these cells are in close contact with blood vessel and have a strong iron transport capacity. In several pathological situations, changes in iron homoeostasis result in altered cellular iron distribution and accumulation and oxidative stress. In inflammatory demyelinating diseases such as multiple sclerosis, reactive astrocytes accumulate iron and upregulate iron efflux and influx molecules, which suggest that they are outfitted to take up and safely recycle iron. In this review, we will discuss the participation of oligodendrocytes and astrocytes in CNS iron homeostasis. Understanding the molecular mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes is necessary for planning effective strategies for iron management during CNS development as well as for the treatment of demyelinating diseases.


2021 ◽  
Author(s):  
Virginia Lioy ◽  
Jean-Noël Lorenzi ◽  
Soumaya Najah ◽  
Thibault Poinsignon ◽  
Leh Hervé ◽  
...  

Abstract Streptomyces are among the most prolific bacterial producers of specialized metabolites, including antibiotics. The linear chromosome is partitioned into a central region harboring core genes and two extremities enriched in specialized metabolite biosynthetic gene clusters (SMBGCs). The molecular mechanisms governing structure and function of these compartmentalized genomes remain mostly unknown. Here we show that in exponential phase, chromosome structure correlates with genetic compartmentalization: conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends are transcriptionally, largely quiescent compartments with different structural features. Onset of metabolic differentiation is accompanied by remodeling of chromosome architecture from an ‘open’ to a rather ‘closed’ conformation, in which the SMBGCs are expressed forming new boundaries. Altogether, our results reveal that S. ambofaciens’ linear chromosome is partitioned into structurally distinct entities, indicating a link between chromosome folding, gene expression and genome evolution.


Reproduction ◽  
2021 ◽  
Vol 161 (5) ◽  
pp. R103-R112
Author(s):  
Marc Kanbar ◽  
Maxime Vermeulen ◽  
Christine Wyns

Organoids are 3D structures characterized by cellular spatial organizations and functions close to the native tissue they mimic. Attempts to create organoids originating from several tissues have now been reported, including the testis. Testicular organoids have the potential to improve our knowledge of the mechanisms that regulate testicular morphogenesis, physiology, and pathophysiology. They could especially prove as useful tools to understand the complex mechanisms involved in the regulation of the germ cell niche in infertility cases as they offer the possibility to control and modify the nature of cell types before self-assembly and thereby opening the perspective for developing innovative methods to restore fertility. To date, there are only few studies targeted at testicular organoids’ formation and even less describing the generation of organoids with both testis-specific structure and function. While researchers described interesting applications with regards to testicular tissue morphogenesis and drug toxicity, further research is needed before testicular organoids would eventually lead to the generation of fertilizing spermatozoa. This review will present the conventional systems used to induce in vitro maturation of testicular cells, describe the different approaches that have been used for the development of testicular organoids and discuss the potential applications they could have in the field of male reproductive biology.


Author(s):  
Margarita Jimenez-Palomares ◽  
Alba Cristobal ◽  
Mª Carmen Duran Ruiz

Organoids have arisen as promising model systems in biomedical research and regenerative medicine due to their potential to reproduce the original tissue architecture and function. In the research field of cell–cell interactions, organoids mimic interactions taking place during organogenesis, including the processes that conduct to multi-lineage differentiation and morphogenetic processes, during immunology response and disease development and expansion. This chapter will address the basis of organoids origin, their importance on immune system cell–cell interactions and the benefits of using them in biomedicine, specifically their potential applications in regenerative medicine and personalized therapy. Organoids might represent a personalized tool for patients to receive earlier diagnoses, risk assessments, and more efficient treatments.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yoshio Takei

AbstractAdaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3− secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70–85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.


Sign in / Sign up

Export Citation Format

Share Document