scholarly journals phylogenize: correcting for phylogeny reveals genes associated with microbial distributions

2019 ◽  
Vol 36 (4) ◽  
pp. 1289-1290
Author(s):  
Patrick H Bradley ◽  
Katherine S Pollard

Abstract Summary Phylogenetic comparative methods are powerful but presently under-utilized ways to identify microbial genes underlying differences in community composition. These methods help to identify functionally important genes because they test for associations beyond those expected when related microbes occupy similar environments. We present phylogenize, a pipeline with web, QIIME 2 and R interfaces that allows researchers to perform phylogenetic regression on 16S amplicon and shotgun sequencing data and to visualize results. phylogenize applies broadly to both host-associated and environmental microbiomes. Using Human Microbiome Project and Earth Microbiome Project data, we show that phylogenize draws similar conclusions from 16S versus shotgun sequencing and reveals both known and candidate pathways associated with host colonization. Availability and implementation phylogenize is available at https://phylogenize.org and https://bitbucket.org/pbradz/phylogenize. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Patrick H. Bradley ◽  
Katherine S. Pollard

AbstractSummaryPhylogenetic comparative methods are powerful but presently under-utilized ways to identify microbial genes underlying differences in community composition. These methods help to identify functionally important genes because they test for associations beyond those expected when related microbes occupy similar environments. We present phylogenize, a pipeline with web, QIIME2, and R interfaces that allows researchers to perform phylogenetic regression on 16S amplicon and shotgun sequencing data and to visualize results. phylogenize applies broadly to both host-associated and environmental microbiomes. Using Human Microbiome Project and Earth Microbiome Project data, we show that phylogenize draws similar conclusions from 16S versus shotgun sequencing and reveals both known and candidate pathways associated with host colonization.Availabilityphylogenize is available at https://phylogenize.org and https://bitbucket.org/pbradz/[email protected]


2021 ◽  
Author(s):  
Camilo Valdes ◽  
Vitalii Stebliankin ◽  
Daniel Ruiz-Perez ◽  
Ji In Park ◽  
Hajeong Lee ◽  
...  

AbstractMotivationAbundance profiles from metagenomic sequencing data synthesize information from billions of sequenced reads coming from thousands of microbial genomes. Analyzing and understanding these profiles can be a challenge since the data they represent is complex. Particularly challenging is their visualization, as existing techniques are inadequate when the taxa number in the thousands. We present a technique for succinct visualization of abundance profiles using a space-filling curve that transforms a profile into an interpretable 2D image.ResultsJasper is a tool for visualizing profiles from metagenomic whole-genome sequencing and 16S, and orders taxa along a space-filling Hilbert curve. The result is a “Microbiome Map”, where each position in the image represents the abundance of a single taxon from a reference collection. Jasper can order the taxa in one of two ways, and depending on the ordering, the microbiome maps can highlight “hot spots” of microbes that are either dominant in taxonomic clades or to the biological conditions under study.We use Jasper to visualize samples from the Human Microbiome Project and from a Chronic Kidney Disease study, and discuss a variety of ways in which the microbiome maps can be an invaluable tool to visualize spatial, temporal, disease, and differential profiles. Our approach can create detailed microbiome maps involving hundreds of thousands of microbial reference genomes with the potential to unravel latent relationships (taxonomic, spatio-temporal, functional, and other) that could remain hidden using traditional visualization techniques. The maps can be converted into animated movies that bring to life the dynamicity of microbiomes.AvailabilityJasper will be available as free software from the Mac App Store and biorg.cs.fiu.edu/jasperSupplementary informationSupplementary materials are available at biorg.cs.fiu.edu/jasper


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Benjamin C. Creekmore ◽  
Josh H. Gray ◽  
William G. Walton ◽  
Kristen A. Biernat ◽  
Michael S. Little ◽  
...  

ABSTRACT Gut microbial β-glucuronidase (GUS) enzymes play important roles in drug efficacy and toxicity, intestinal carcinogenesis, and mammalian-microbial symbiosis. Recently, the first catalog of human gut GUS proteins was provided for the Human Microbiome Project stool sample database and revealed 279 unique GUS enzymes organized into six categories based on active-site structural features. Because mice represent a model biomedical research organism, here we provide an analogous catalog of mouse intestinal microbial GUS proteins—a mouse gut GUSome. Using metagenome analysis guided by protein structure, we examined 2.5 million unique proteins from a comprehensive mouse gut metagenome created from several mouse strains, providers, housing conditions, and diets. We identified 444 unique GUS proteins and organized them into six categories based on active-site features, similarly to the human GUSome analysis. GUS enzymes were encoded by the major gut microbial phyla, including Firmicutes (60%) and Bacteroidetes (21%), and there were nearly 20% for which taxonomy could not be assigned. No differences in gut microbial gus gene composition were observed for mice based on sex. However, mice exhibited gus differences based on active-site features associated with provider, location, strain, and diet. Furthermore, diet yielded the largest differences in gus composition. Biochemical analysis of two low-fat-associated GUS enzymes revealed that they are variable with respect to their efficacy of processing both sulfated and nonsulfated heparan nonasaccharides containing terminal glucuronides. IMPORTANCE Mice are commonly employed as model organisms of mammalian disease; as such, our understanding of the compositions of their gut microbiomes is critical to appreciating how the mouse and human gastrointestinal tracts mirror one another. GUS enzymes, with importance in normal physiology and disease, are an attractive set of proteins to use for such analyses. Here we show that while the specific GUS enzymes differ at the sequence level, a core GUSome functionality appears conserved between mouse and human gastrointestinal bacteria. Mouse strain, provider, housing location, and diet exhibit distinct GUSomes and gus gene compositions, but sex seems not to affect the GUSome. These data provide a basis for understanding the gut microbial GUS enzymes present in commonly used laboratory mice. Further, they demonstrate the utility of metagenome analysis guided by protein structure to provide specific sets of functionally related proteins from whole-genome metagenome sequencing data.


2019 ◽  
Vol 36 (7) ◽  
pp. 2291-2292 ◽  
Author(s):  
Saskia Freytag ◽  
Ryan Lister

Abstract Summary Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. Availability and implementation schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (11) ◽  
pp. 3585-3587
Author(s):  
Lin Wang ◽  
Francisca Catalan ◽  
Karin Shamardani ◽  
Husam Babikir ◽  
Aaron Diaz

Abstract Summary Single-cell data are being generated at an accelerating pace. How best to project data across single-cell atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves cell-type labels when mapping across diverse platforms. Availability and implementation https://github.com/diazlab/ELSA Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Liam F Spurr ◽  
Mehdi Touat ◽  
Alison M Taylor ◽  
Adrian M Dubuc ◽  
Juliann Shih ◽  
...  

Abstract Summary The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. Availability and implementation ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 32 (6) ◽  
pp. 867-874 ◽  
Author(s):  
Matthew B. Biggs ◽  
Jason A. Papin

Abstract Motivation: Most microbes on Earth have never been grown in a laboratory, and can only be studied through DNA sequences. Environmental DNA sequence samples are complex mixtures of fragments from many different species, often unknown. There is a pressing need for methods that can reliably reconstruct genomes from complex metagenomic samples in order to address questions in ecology, bioremediation, and human health. Results: We present the SOrting by NEtwork Completion (SONEC) approach for assigning reactions to incomplete metabolic networks based on a metabolite connectivity score. We successfully demonstrate proof of concept in a set of 100 genome-scale metabolic network reconstructions, and delineate the variables that impact reaction assignment accuracy. We further demonstrate the integration of SONEC with existing approaches (such as cross-sample scaffold abundance profile clustering) on a set of 94 metagenomic samples from the Human Microbiome Project. We show that not only does SONEC aid in reconstructing species-level genomes, but it also improves functional predictions made with the resulting metabolic networks. Availability and implementation: The datasets and code presented in this work are available at: https://bitbucket.org/mattbiggs/sorting_by_network_completion/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Lucia Maestre-Carballa ◽  
Manuel Martínez-García ◽  
Vicente Navarro-López

A comprehensive characterization of the human body resistome (sets of antibiotic resistance genes (ARGs)) is yet to be done and paramount for addressing the antibiotic microbial resistance threat. Here, we study the resistome of 771 samples from five major body parts (skin, nares, vagina, gut and oral cavity) of healthy subjects from the Human Microbiome Project and addressed the potential dispersion of ARGs in pristine environments. A total of 28,731 ARGs belonging to 344 different ARG types were found in the HMP proteome dataset (n=9.1x107 proteins analyzed). Our study reveals a distinct resistome profile (ARG type and abundance) between body sites and high inter-individual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed by the oral cavity, while the gut showed one of the highest ARG richness (shared with nares) but the lowest abundance (≈1.3 genes/genome). Fluroquinolone resistance genes were the most abundant in the human body, followed by macrolide-lincosamide-streptogramin (MLS) or tetracycline. Most of the ARGs belonged to common bacterial commensals and multidrug resistance trait was predominant in the nares and vagina. Our data also provide hope, since the spread of common ARG from the human body to pristine environments (n=271 samples; 77 Gb of sequencing data and 2.1x108 proteins analyzed) thus far remains very unlikely (only one case found in an autochthonous bacterium from a pristine environment). These findings broaden our understanding of ARG in the context of the human microbiome and the One-Health Initiative of WHO uniting human host-microbes and environments as a whole.


Sign in / Sign up

Export Citation Format

Share Document