scholarly journals Effects of macrophage depletion on characteristics of cervix remodeling and pregnancy in CD11b-dtr mice

2019 ◽  
Vol 100 (5) ◽  
pp. 1386-1394 ◽  
Author(s):  
S M Yellon ◽  
E Greaves ◽  
A C Heuerman ◽  
A E Dobyns ◽  
J E Norman

Abstract To test the hypothesis that macrophages are essential for remodeling the cervix in preparation for birth, pregnant homozygous CD11b-dtr mice were injected with diphtheria toxin (DT) on days 14 and 16 postbreeding. On day 15 postbreeding, macrophages (F4/80+) were depleted in cervix and kidney, but not in liver, ovary, or other non-reproductive tissues in DT—compared to saline—treated dtr mice or wild-type controls given DT or saline. Within 24 h of DT-treatment, the density of cell nuclei and macrophages declined in cervix stroma in dtr mice versus controls, but birefringence of collagen, as an indication of extracellular cross-linked structure, remained unchanged. Only in the cervix of DT-treated dtr mice was an apoptotic morphology evident in macrophages. DT-treatment did not alter the sparse presence or morphology of neutrophils. By day 18 postbreeding, macrophages repopulated the cervix in DT-treated dtr mice so that the numbers were comparable to that in controls. However, at term, evidence of fetal mortality without cervix ripening occurred in most dtr mice given DT—a possible consequence of treatment effects on placental function. These findings suggest that CD11b+ F4/80+ macrophages are important to sustain pregnancy and are required for processes that remodel the cervix in preparation for parturition.

1987 ◽  
Vol 7 (4) ◽  
pp. 1576-1579 ◽  
Author(s):  
F Maxwell ◽  
I H Maxwell ◽  
L M Glode

DNA including the coding sequence for the A chain of the mutant diphtheria toxin tox 176 was cloned. The cloned mature A-chain coding sequence showed a G-to-A transition at nucleotide 383 as the only difference from the wild-type sequence. This resulted in replacement of the glycine at position 128 by aspartic acid in the predicted amino acid sequence. A eucaryotic cell expression plasmid, pTH1-176, was constructed in which the tox 176 A-chain coding sequence was attached to a truncated metallothionein promoter. The toxicity of this construct, compared with that of the corresponding wild-type diphtheria toxin A-chain plasmid, pTH1, was assessed after transfection into the human 293 cell line by an indirect transient expression assay (I. H. Maxwell, F. Maxwell, and L. M. Glode, Cancer Res. 46:4660-4664, 1986). For the same effect, 15- to 30-fold more pTH1-176 than pTH1 was required, a result consistent with previous in vitro estimates of the diminished activity of the tox 176 A chain. Controlled expression of the cloned tox 176 A-chain coding sequence may provide a means of eliminating specific cell populations in an organism, for which purpose the wild-type diphtheria toxin A chain might prove too toxic.


2002 ◽  
Vol 184 (20) ◽  
pp. 5723-5732 ◽  
Author(s):  
Diana Marra Oram ◽  
Ana Avdalovic ◽  
Randall K. Holmes

ABSTRACT Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe2+ concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.


2019 ◽  
Author(s):  
Chieko Goto ◽  
Kentaro Tamura ◽  
Satsuki Nishimaki ◽  
Naoki Yanagisawa ◽  
Kumi Matsuura-Tokita ◽  
...  

AbstractA putative nuclear lamina protein, KAKU4, modulates nuclear morphology in Arabidopsis thaliana seedlings but its physiological significance is unknown. KAKU4 was strongly expressed in mature pollen grains, each of which has a vegetative cell and two sperm cells. KAKU4 protein was highly abundant on the envelopes of vegetative nuclei (VNs) and less abundant on the envelopes of sperm cell nuclei (SCNs) in pollen grains and elongating pollen tubes. VN is irregularly shaped in wild-type pollen. However, KAKU4 deficiency caused it to become more spherical. These results suggest that the dense accumulation of KAKU4 is responsible for the irregular shape of the VNs. After a pollen grain germinates, the VN and SCNs migrate to the tip of the pollen tube. In the wild type, the VN preceded the SCNs in 91–93% of the pollen tubes, whereas in kaku4 mutants, the VN trailed the SCNs in 39–58% of the pollen tubes. kaku4 pollen was less competitive than wild-type pollen after pollination, although it had an ability to fertilize. Taken together, our results suggest that controlling the nuclear shape in vegetative cells of pollen grains by KAKU4 ensures the orderly migration of the VN and sperm cells in pollen tubes.HighlightThe nuclear envelope protein KAKU4 is involved in controlling the migration order of vegetative nuclei and sperm cells in pollen tubes, affecting the competitive ability of pollen for fertilization.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 949-949
Author(s):  
Q. Jeremy Wen ◽  
Brittany Woods ◽  
Qiong Yang ◽  
Chiu Sophia ◽  
Gu Lillu ◽  
...  

Abstract Aberrant megakaryopoiesis is a hallmark of the myeloproliferative neoplasms (MPN). It is has been long known that abnormal megakaryocytes secrete elevated levels of cytokines such as TGFβ, resulting in pathologies including bone marrow fibrosis. Two recent studies showed that megakaryocytes regulate the quiescence of HSCs, raising the possibility that megakaryocytes may promote the MPNs by influencing the biology of non-malignant HSCs. However, the mechanism by which megakaryocytes regulate the initiation and progression of MPNs is largely unknown. To study the role of megakaryocytes in the MPNs, we analyzed the phenotype of PF4-Cre/Jak2V617F mice in which Jak2 is expressed in the megakaryocyte lineage from the endogenous locus, in contrast to previous studies, which used transgenic models. Selective activation of Jak2V617F was confirmed by allele-specific qPCR. CD41+ cells were positive for mutant Jak2, whereas sorted stem/progenitor cells and erythroid cells were Jak2 wild-type. Furthermore, flow cytometry showed that Stat5 activation was present in megakaryocytes, but not in erythroid or myeloid cells. Activation of JAK-STAT signaling caused an expansion of megakaryocytes in the bone marrow and spleen and a modest increase in the platelet count. Surprisingly, PF4-Cre/Jak2V617F mice also displayed a robust expansion of TER119(low)/CD71(high) and TER119(high)/CD71(high) red cells in the spleen, increased hematocrit and splenomegaly. Histological examination of the spleen revealed expansion of the erythroid lineage coupled with disrupted splenic architecture and fibrosis. This PV-like phenotype was fully penetrant and comparable to that of Vav-Cre/Jak2V617F mice, which express mutant Jak2 in all hematopoietic lineages. Profiling of hematopoietic progenitors by flow cytometry demonstrated that myeloid progenitor populations were expanded and skewed toward the erythroid-megakaryocyte lineage with a significant increase in Pre Meg-E, Pre CFU-E and MKPs in the PF4Cre/Jak2V617F mice. In addition, LSK cells were increased in both the bone marrow and spleen. Cytokine profiling of the plasma revealed increased levels of several cytokines, including Il-6, which is known to be upregulated in human JAK2 mutant PV megakaryocytes. Significant increases in Cxcl1, Cxcl2, and Ccl11 were also detected. Real-time qPCR analysis confirmed increased expression of these cytokines/chemokines in Jak2V617F-mutant CD41+ cells. Furthermore, IL6 treatment increased EPO-dependent colony formation of wild type LSKs and MEPs, and also enhanced expression of the erythroid cell markers CD71 and Ter119. To further explore the role of megakaryocytes in the MPNs, we used a strategy in which expression of the diphtheria toxin receptor (DTR) sensitizes cells to diphtheria toxin (DT). We transduced c-Kit+ cells from PF4-Cre/iDTR+/- mice with MPLW515L and transplanted the cells to irradiated mice. As expected, both iDTR+/- and PF4-Cre/iDTR+/- mice developed a PMF-like phenotype, including leukocytosis, thrombocytosis, splenomegaly and myelofibrosis (Fig 1). Treatment of these animals with DT caused significant reductions in megakaryocytes in the bone marrow and spleen as well as a decrease in the platelet count of PF4-Cre/iDTR+/- mice. Of note, DT also significantly reduced the white count and spleen weight, while restoring splenic architecture. PF4Cre/iDTR+/- mice also showed significant reduction of c-Kit+ myeloid progenitor cells. Therefore, depletion of megakaryocytes significantly attenuated the disease phenotype of MPLW515L induced MPN in vivo. Together, these two model systems reveal that JAK2 activation in megakaryocytes is sufficient and necessary for MPNs and support the development of megakaryocyte differentiation therapy in the disease. Moreover our data resonate with studies in MPN patients in which a JAK2V617F low allele burden in the setting of full-blown, clinical MPN. figure 1 Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. figure 1. Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. Disclosures Levine: Novartis: Consultancy; Qiagen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 632-642 ◽  
Author(s):  
Jacqueline L. Cordell ◽  
Karen A.F. Pulford ◽  
Barbara Bigerna ◽  
Giovanna Roncador ◽  
Alison Banham ◽  
...  

Abstract In anaplastic large-cell lymphoma (ALCL), the (2;5) chromosomal translocation creates a fusion gene encoding the 80-kD NPM-ALK hybrid protein. This report describes three new monoclonal antibodies, two of which recognize, by Western blotting, the N-terminal portion of NPM present in the NPM-ALK fusion protein and also in two other NPM fusion proteins (NPM-RAR and NPM-MLF1). The third antibody recognizes the C-terminal portion (deleted in NPM-ALK) and reacts only with wild-type NPM. The three antibodies immunostain wild-type NPM (in paraffin-embedded normal tissue samples) in cell nuclei and in the cytoplasm of mitotic cells. Cerebral neurones, exceptionally, show diffuse cytoplasmic labeling. In contrast to normal tissues, the two antibodies against the N-terminal portion of NPM labeled the cytoplasm of neoplastic cells, in four ALK-positive ALCL, reflecting their reactivity with NPM-ALK fusion protein, whereas the antibody to the C-terminal NPM epitope labeled only cell nuclei. Immunocytochemical labeling with these antibodies can therefore confirm that an ALK-positive lymphoma expresses NPM-ALK (rather than a variant ALK-fusion protein) and may also provide evidence for chromosomal anomalies involving the NPM gene other than the classical (2;5) translocation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Teruo Kusano ◽  
Driss Ehirchiou ◽  
Tomohiro Matsumura ◽  
Veronique Chobaz ◽  
Sonia Nasi ◽  
...  

Abstract Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth.


2020 ◽  
Vol 117 (29) ◽  
pp. 16938-16948 ◽  
Author(s):  
Vania Vidimar ◽  
Greg L. Beilhartz ◽  
Minyoung Park ◽  
Marco Biancucci ◽  
Matthew B. Kieffer ◽  
...  

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1–specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutantRAS. Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.


1999 ◽  
Vol 11 (1) ◽  
pp. 49 ◽  
Author(s):  
Esko Veräjänkorva ◽  
Mika Martikainen ◽  
Antti Saraste ◽  
Jari Sundström ◽  
Pasi Pöllänen

The presence of sperm antibodies correlates with nearly every pathological condition of the male reproductive tract. In the seasonal breeder, mink, a decrease in gonadotrophin secretion and testicular regression also induces sperm antibodies. Because the Sertoli cells and the principal cells of the epididymis (i.e. the cells mainly responsible for protection of germ cells from autoimmune destruction) are dependent on androgens, and because the androgen concentration decreases in both the testis and epididymis during male hormonal contraception, the presence of IgG class sperm antibodies in serum was studied in rats during the suppression and recovery phases of testosterone contraception and after vasectomy. Five-centimetre long testosterone implants were placed under the dorsal skin of rats under pentobarbitone anaesthesia. The control rats received empty implants. All implants were left in the rats for 27 or 53 days. The total number of testicular antigens detected by sera from the vasectomized rats increased significantly until 66 days post-operation, and then decreased to the levels of intact rats. The number of testicular antigens detected by sera from rats receiving contraceptive doses of testosterone did not increase before the testosterone capsules were removed, but at 40 days post removal of the silastic capsules, the number of antigens detected by the sera was significantly higher than in intact rats and at 77 days post removal of the silastic capsules, the number of antigens detected by the sera was significantly higher than at 27 days after starting testosterone administration. No significant changes in the number of antigens detected by the sera could be observed after the implanting of empty capsules or after their removal. Vasectomy mostly induced antibodies against testicular antigens in the molecular ratio ranges of 70–82, 25–33 and 21–24.5 kD. Antibodies against antigens in these molecular ratio ranges were not significantly induced during or after treatment with contraceptive doses of testosterone. Cell nuclei with apoptotic morphology could be observed in the seminiferous tubules of the vasectomized rats, but DNA in situ 3′-end labelling of testes could not confirm any differences between the testes of vasectomized and sham-operated rats or between testosterone-treated and empty implant-treated rats. CD3 + T cells could not be observed in the testes of any of the treatment groups. These results suggest that the immunological conditions remain stable in the testes after vasectomy and during testosterone treatment, but that the animals are more prone to develop autoantibodies after vasectomy and during recovery from treatment with exogenous testosterone.


2008 ◽  
Vol 20 (9) ◽  
pp. 92
Author(s):  
A. S. Care ◽  
W. V. Ingman ◽  
M. J. Jasper ◽  
SA Robertson

During the oestrous cycle, uterine epithelial cells respond to ovarian steroid hormones by producing an array of cytokines and chemokines that cause macrophage recruitment into the uterus and regulate macrophage activation phenotype. In turn, growth factors and cytokines synthesised by macrophages potentially impact epithelial cell proliferation, secretory function and receptivity to embryo attachment. To investigate the hypothesis that uterine macrophages are essential contributors to the proliferation of uterine epithelial cells, we have used an ovariectomy and steroid replacement model in CD11b-DTR ‘Mac-terminator' mice. These mice are engineered for CD11b promoter-driven expression of the monkey diphtheria toxin (DT) receptor, allowing acute systemic ablation of macrophages by administration of human diphtheria toxin (DT). CD11b-DTR mice were ovariectomised, then 2–4 weeks later were primed with E 2, followed by administration of DT (25 ng/g, ip) to effect macrophage depletion, and BrDU to label proliferating cells. Control mice were given PBS instead of DT. Uterine tissues were stained with F4/80 to detect macrophages, and anti-BrDU to detect BrDU+ epithelial cell nuclei. DT treatment was associated with a depletion of >90% of F4/80+ uterine macrophages. However, the numbers of BrDU+ epithelial cells and the architecture of the luminal epithelial surface and abundance of epithelial glands were similar in control and DT-treated uterine tissues. These data suggest that resident macrophages may not be essential for oestrogen-driven uterine epithelial cell proliferation. In ongoing experiments we are assessing the effect of macrophage depletion on epithelial cell expression of functional markers including those involved in regulation of embryo attachment.


Sign in / Sign up

Export Citation Format

Share Document