scholarly journals Characterizing the role of the structural connectome in seizure dynamics

Brain ◽  
2019 ◽  
Vol 142 (7) ◽  
pp. 1955-1972 ◽  
Author(s):  
Preya Shah ◽  
Arian Ashourvan ◽  
Fadi Mikhail ◽  
Adam Pines ◽  
Lohith Kini ◽  
...  

Abstract How does the human brain’s structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural—through surgery or laser ablation—but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.

2018 ◽  
Author(s):  
Preya Shah ◽  
Arian Ashourvan ◽  
Fadi Mikhail ◽  
Adam Pines ◽  
Lohith Kini ◽  
...  

AbstractHow does the human brain’s structural scaffold give rise to its intricate functional dynamics? This is a central challenge in translational neuroscience, particularly in epilepsy, a disorder that affects over 50 million people worldwide. Treatment for medication-resistant focal epilepsy is often structural – through surgery, devices or focal laser ablation – but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG (iEEG). Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and iEEG, across preictal and ictal periods in 45 seizures from 9 patients with unilateral drug-resistant focal epilepsy. We use High Angular Resolution Diffusion Imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered iEEG. Across all frequency bands, we find significant increases in structure-function coupling from preictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are stereotyped, and a function of each patient’s individual anatomy. These results suggest that seizures harness the underlying structural connectome as they propagate. Our findings suggest that the relationship between structural and functional connectivity in epilepsy may inform current and new therapies to map and alter seizure spread, and pave the way for better-targeted, patient-specific interventions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


2019 ◽  
Author(s):  
Milou Straathof ◽  
Michel R.T. Sinke ◽  
Theresia J.M. Roelofs ◽  
Erwin L.A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in many disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional connectivity and macro-scale diffusion-based structural connectivity, but no correspondence between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Locally, strong functional connectivity was found in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Distinct structure-function relationships across the brain can explain the organization of networks and may underlie variations in the impact of structural damage on functional networks and behavior.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Milou Straathof ◽  
Michel R. T. Sinke ◽  
Theresia J. M. Roelofs ◽  
Erwin L. A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhang ◽  
Rosa Cortese ◽  
Nicola De Stefano ◽  
Antonio Giorgio

Cognitive impairment (CI) occurs in 43 to 70% of multiple sclerosis (MS) patients at both early and later disease stages. Cognitive domains typically involved in MS include attention, information processing speed, memory, and executive control. The growing use of advanced magnetic resonance imaging (MRI) techniques is furthering our understanding on the altered structural connectivity (SC) and functional connectivity (FC) substrates of CI in MS. Regarding SC, different diffusion tensor imaging (DTI) measures (e.g., fractional anisotropy, diffusivities) along tractography-derived white matter (WM) tracts showed relevance toward CI. Novel diffusion MRI techniques, including diffusion kurtosis imaging, diffusion spectrum imaging, high angular resolution diffusion imaging, and neurite orientation dispersion and density imaging, showed more pathological specificity compared to the traditional DTI but require longer scan time and mathematical complexities for their interpretation. As for FC, task-based functional MRI (fMRI) has been traditionally used in MS to brain mapping the neural activity during various cognitive tasks. Analysis methods of resting fMRI (seed-based, independent component analysis, graph analysis) have been applied to uncover the functional substrates of CI in MS by revealing adaptive or maladaptive mechanisms of functional reorganization. The relevance for CI in MS of SC–FC relationships, reflecting common pathogenic mechanisms in WM and gray matter, has been recently explored by novel MRI analysis methods. This review summarizes recent advances on MRI techniques of SC and FC and their potential to provide a deeper understanding of the pathological substrates of CI in MS.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Venetia Voutsa ◽  
Demian Battaglia ◽  
Louise J. Bracken ◽  
Andrea Brovelli ◽  
Julia Costescu ◽  
...  

The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines—from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity—one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes—excitations, regular and chaotic oscillators—and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.


Neurology ◽  
2020 ◽  
pp. 10.1212/WNL.0000000000011408
Author(s):  
Zhuying Chen ◽  
David B. Grayden ◽  
Anthony N. Burkitt ◽  
Udaya Seneviratne ◽  
Wendyl J. D'Souza ◽  
...  

Objective:To determine the utility of high-frequency activity (HFA) and epileptiform spikes as biomarkers for epilepsy, we examined the variability in their rates and locations using long-term ambulatory intracranial EEG (iEEG) recordings.Methods:This study used continuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy. HFA was defined as 80-170 Hz events with amplitudes clearly larger than the background, which was automatically detected using a custom algorithm. The automatically detected HFA was compared with visually annotated high-frequency oscillations (HFOs). The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases.Results:HFA included manually annotated HFOs and high-amplitude events occurring in the 80-170 Hz range without observable oscillatory behavior. HFA and spike rates had high amounts of intra- and inter-patient variability. Rates of HFA and spikes had large variability after electrode implantation in most of the patients. Locations of HFA and/or spikes varied up to weeks in more than one-third of the patients. Both HFA and spike rates showed strong circadian rhythms in all patients and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes.Conclusions:Analysis of HFA and epileptiform spikes should consider post-implantation variability. HFA and epileptiform spikes, like seizures, show circadian rhythms. However, the circadian profiles can vary spatially within patients and their correlations to seizures are patient-specific.


2020 ◽  
Author(s):  
Zhuying Chen ◽  
David B. Grayden ◽  
Anthony N. Burkitt ◽  
Udaya Seneviratne ◽  
Wendyl J. D’Souza ◽  
...  

AbstractObjectiveTo assess the variability in the rates and locations of high-frequency activity (HFA) and epileptiform spikes after electrode implantation, and to examine the long-term patterns of HFA using ambulatory intracranial EEG (iEEG) recordings.MethodsContinuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy were used in this study. HFA was defined as high-frequency events with amplitudes clearly larger than the background, which was automatically detected using a custom algorithm. High-frequency oscillations (HFOs) were also visually annotated by three neurologists in randomly sampled segments of the total data. The automatically detected HFA was compared with the visually marked HFOs. The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases.ResultsHFA was a more general event that encompassed HFOs manually annotated by different reviewers. HFA and spike rates had high amounts of intra- and inter-patient variability. The rates and locations of HFA and spikes took up to weeks to stabilize after electrode implantation in some patients. Both HFA and spike rates showed strong circadian rhythms in all patients and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes.ConclusionsAnalysis of HFA and epileptiform spikes should account for post-implantation variability. Like seizures, HFA and epileptiform spikes show circadian rhythms. However, the circadian profiles can vary spatially within patients and their correlations to seizures are patient-specific.


2019 ◽  
Author(s):  
Emmanouil Giannakakis ◽  
Frances Hutchings ◽  
Christoforos A. Papasavvas ◽  
Cheol E. Han ◽  
Bernd Weber ◽  
...  

AbstractIn patients with drug resistant focal epilepsy, targeted weak stimulation of the affected brain regions has been proposed as an alternative to surgery. However, the effectiveness of stimulation as a treatment presents great variation from patient to patient. In this study, brain activity is simulated for a period of one day using a network of Wilson-Cowan oscillators coupled according to diffusion imaging based structural connectivity. We use this computational model to examine the potential long-term effects of stimulation on brain connectivity. Our findings indicate that the overall simulated effect of stimulation is heavily dependent on the excitability of the stimulated regions. Additionally, stimulation seems to lead to long-term effects in the connectivity of secondary (non-stimulated) regions in epileptic patients. These effects are correlated with a worse surgery outcome in some patients, which suggests that long-term simulations could be used as a tool to determine suitability for surgery/stimulation.


2018 ◽  
Vol 60 (5) ◽  
pp. 497-504 ◽  
Author(s):  
Giuseppina Caiazzo ◽  
Michele Fratello ◽  
Federica Di Nardo ◽  
Francesca Trojsi ◽  
Gioacchino Tedeschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document