scholarly journals Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling

Brain ◽  
2019 ◽  
Vol 143 (2) ◽  
pp. 512-530 ◽  
Author(s):  
Mingzhi Han ◽  
Shuai Wang ◽  
Sabrina Fritah ◽  
Xu Wang ◽  
Wenjing Zhou ◽  
...  

Abstract Long non-coding RNAs play critical roles in tumour progression. Through analysis of publicly available genomic datasets, we found that MIR22HG, the host gene of microRNAs miR-22-3p and miR-22-5p, is ranked among the most dysregulated long non-coding RNAs in glioblastoma. The main purpose of this work was to determine the impact of MIR22HG on glioblastoma growth and invasion and to elucidate its mechanistic function. The MIR22HG/miR-22 axis was highly expressed in glioblastoma as well as in glioma stem-like cells compared to normal neural stem cells. In glioblastoma, increased expression of MIR22HG is associated with poor prognosis. Through a number of functional studies, we show that MIR22HG silencing inhibits the Wnt/β-catenin signalling pathway through loss of miR-22-3p and -5p. This leads to attenuated cell proliferation, invasion and in vivo tumour growth. We further show that two genes, SFRP2 and PCDH15, are direct targets of miR-22-3p and -5p and inhibit Wnt signalling in glioblastoma. Finally, based on the 3D structure of the pre-miR-22, we identified a specific small-molecule inhibitor, AC1L6JTK, that inhibits the enzyme Dicer to block processing of pre-miR-22 into mature miR-22. AC1L6JTK treatment caused an inhibition of tumour growth in vivo. Our findings show that MIR22HG is a critical inducer of the Wnt/β-catenin signalling pathway, and that its targeting may represent a novel therapeutic strategy in glioblastoma patients.

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Xiaojian Li ◽  
Liang Liu ◽  
Yidan Luo ◽  
Sitong Cui ◽  
Wei Chen ◽  
...  

Abstract In recent years, many studies have reported on the abnormal expression and correlation of long non-coding RNAs (lncRNAs) in tumours. However, the accurate molecular mechanism of lncRNAs in glioma is still in its infancy. In the present study, we aimed to explore the molecular mechanism of small nucleolar RNA host gene 5 (SNHG5) in glioma progression. First, we found that SNHG5 expression was higher in glioma and was related to glioma glucose uptake, migration and invasion. Second, through a series of assays, we concluded that SNHG5 acts as a sponge for miR-205, which inhibits tumour growth in glioma by targeting E2F transcription factor 3 (E2F3). Third, using a xenograft mouse model, we demonstrated that SNHG5 regulates tumourigenesis in vivo. Taken together, our results show that the SNHG5/miR-205/E2F3 axis is involved in glioma progression and may provide a new therapeutic target for the diagnosis and therapy of glioma.


Author(s):  
Xiuming Liu ◽  
Xiaofeng Li ◽  
Jianchang Li

AbstractRetinoblastoma is the most common malignancy in children's eyes with high incidence. Long non-coding RNAs (lncRNAs) play important roles in the progression of retinoblastoma. LncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) has been found to stimulate retinoblastoma. However, the mechanism of FEZF1-AS1 underlying progression of retinoblastoma is still unclear. In current study, FEZF1-AS1 was up-regulated in retinoblastoma tissues and cells. FEZF1-AS1 overexpression enhanced retinoblastoma cell viability, promoted cell cycle, and inhibited apoptosis. Conversely, FEZF1-AS1 knockdown reduced cell viability, cycle, and elevated apoptosis. The interaction between FEZF1-AS1 and microRNA-363-3p (miR-363-3p) was confirmed. FEZF1-AS1 down-regulated miR-363-3p and up-regulated PAX6. PAX6 was a target gene of miR-363-3p. EZF1-AS1 promoted retinoblastoma cell viability and suppressed apoptosis via PAX6. Further, we demonstrated that FEZF1-AS1 contribute to tumor formation in vivo. In conclusion, FEZF1-AS1 elevated growth and inhibited apoptosis by regulating miR-363-3p/PAX6 in retinoblastoma, which provide a new target for retinoblastoma treatment.


Gut ◽  
2018 ◽  
Vol 68 (4) ◽  
pp. 693-707 ◽  
Author(s):  
Delphine Goehrig ◽  
Jérémy Nigri ◽  
Rémi Samain ◽  
Zhichong Wu ◽  
Paola Cappello ◽  
...  

ObjectivePancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer.DesignWe performed studies with p48-Cre;KrasG12D, pdx1-Cre;KrasG12D;Ink4a/Arffl/fl, pdx1-Cre;KrasG12D; p53R172H mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-βig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy.ResultsWe identified βig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that βig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting βig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting βig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment.ConclusionsOur data indicate that targeting stromal extracellular matrix protein βig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present βig-h3 as a novel immunological target in pancreatic cancer.


2021 ◽  
Author(s):  
Yingfeng Zhang ◽  
Yanhong Gao ◽  
Congcong Sun ◽  
Yanhua Mao ◽  
Benyuan Wu ◽  
...  

Abstract Background: KIAA1456 is effective in the inhibition of tumorigenesis. We previously confirmed that KIAA1456 inhibits cell proliferation and metastasis in epithelial ovarian tumours. In the current study, the specific molecular mechanisms and clinical significance of KIAA1456 underlying the repression of epithelial ovarian cancer were investigated.Methods: Immunohistochemistry was used to evaluate the protein expression of KIAA1456 and SSX1 in epithelial ovarian tumours and normal ovarian tissues. The relationship of KIAA1456 and SSX1 with overall survival of patients with epithelial ovarian cancer was analysed with Kaplan–Meier survival curve and log-rank tests. KIAA1456 was overexpressed and silenced in HO8910PM cells with a lentivirus. The anticancer activity of KIAA1456 was tested by CCK8, plate clone formation assay, flow cytometry, wound healing assay and Transwell invasion assay. Xenograft tumour models were used to investigate the effects of KIAA1456 on tumour growth in vivo. Bioinformatics analyses of microarray profiling indicated that SSX1 and the PI3K/AKT signalling pathway were differentially expressed in KIAA1456-overexpressing and control cells. Therefore, the biological function of HO8910PM cotransfected with KIAA1456- and SSX1-overexpressing cells was detected to validate the rescue effect of SSX1. The downstream factors of PI3K/AKT that are related to cell growth and apoptosis, including p-AKT, PCNA, MMP9, CyclinD1 and Bcl-2, were detected by Western blot analysis.Results: KIAA1456 expression was lower in epithelial ovarian tumours than in normal ovarian tissues. Its expression level negatively correlated with pathological grade. Pearson’s correlation analysis showed that KIAA1456 negatively correlated with SSX1 expression. The overexpression of KIAA1456 in HO8910PM cells inhibited proliferation, migration and invasion and promoted apoptosis. By contrast, the silencing of KIAA1456 resulted in the opposite behaviour. A xenograft tumour experiment showed that KIAA1456 overexpression inhibited tumour growth in vivo. Mechanistically, the overexpression of KIAA1456 inhibited SSX1 expression and AKT phosphorylation in HO8910PM cells, causing the inactivation of the AKT signalling pathway and eventually reducing the expression of PCNA, CyclinD1, MMP9 and Bcl2. Similarly, the silencing of KIAA1456 resulted in the opposite behaviour. Finally, SSX1 overexpression could partially reverse the KIAA1456-induced biological effect.Conclusion: KIAA1456 may serve as a tumour suppressor via the inactivation of SSX1 and the AKT pathway, providing a promising therapeutic target for epithelial ovarian cancers.


2020 ◽  
Author(s):  
Yonggang Huang ◽  
Jin Zhang ◽  
Wei Dong ◽  
Huiping Peng ◽  
Maolin Gu ◽  
...  

Abstract Background Liver tumor-initiating cells (T-ICs) contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. Methods Real-time PCR was used to detect the expression of miR-96 in liver tumor-initiating cells (T-ICs). The impact of miR-96 on liver T-ICs expansion was investigated both in vivo and in vitro . The correlation between miR-96 expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results Our finding shows that miR-96 is upregulated in liver T-ICs. Functional studies revealed that forced miR-96 promotes liver T-ICs self-renewal and tumorigenesis. Conversely, knockdown miR-96 inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, miR-96 downregulates SOX6 via its mRNA 3’UTR in liver T-ICs. Furthermore, the miR-96 expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-96 may predict sorafenib benefits in HCC patients. Conclusion Our findings revealed the crucial role of the miR-96 in liver T-ICs expansion and sorafenib response, rendering miR-96 as an optimal target for the prevention and intervention of HCC.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC was still unknown.Methods RT-PCR and western blot analysis were used to detect the expression of THOR and p-STAT3. The impact of THOR on OC proliferation, metastasis and self-renew was investigated in vitro and in vivo . The prognostic value of THOR was determined in OC patient cohorts.Results In this study, our results found that THOR was markedly upregulated in human OC tissues and predict the poor prognosis of OC patients. THOR knockdown resulted in significant inhibition of the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 diminished the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirmed that STAT3 was required in THOR-driven OC cells progression.Conclusion Our findings revealed that THOR could promote OC cells growth, metastasis and self-renew by activating STAT3 signaling and may be a good predictive factor and therapeutic target.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Brendon P Scicluna ◽  
Fabrice Uhel ◽  
Lonneke A van Vught ◽  
Maryse A Wiewel ◽  
Arie J Hoogendijk ◽  
...  

The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte ‘regulome’ that can facilitate prioritization of future functional studies.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background: Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC remains unclear. Methods: RT-PCR and western blot analysis were used to detect the expression of THOR, p-STAT3 and IL-6. The impact of THOR on OC proliferation, metastasis and self-renewal was investigated in vitro and in vivo. The prognostic value of THOR was determined in OC patient cohorts. Results: In this study, our results find that THOR is markedly upregulated in human OC tissues and predicts the poor prognosis of OC patients. Functional studies have revealed that knockdown of THOR inhibits the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the IL-6/STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 or IL-6R inhibitor tocilizumab diminish the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirm that IL-6/STAT3 is required in THOR-driven OC cells progression. Conclusion: Our findings reveal that THOR could promote OC cells growth, metastasis and self-renewal by activating IL-6/STAT3 signaling and may be a good predictive factor and therapeutic target.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ping Liu ◽  
Ruiting Fu ◽  
Kai Chen ◽  
Lu Zhang ◽  
Shasha Wang ◽  
...  

AbstractHigh-grade serous ovarian cancer (HGSOC) is a common and lethal cancer of the female reproductive system. Long non-coding RNAs (lncRNAs) are aberrantly expressed in various cancers and play crucial roles in tumour progression. However, their function and molecular mechanism in HGSOC remain largely unknown. Based on public databases and bioinformatics analyses, the overexpression of lncRNA CTBP1-DT in HGSOC tissues was detected and validated in a cohort of HGSOC tissues. High expression of lncRNA CTBP1-DT was associated with poor prognosis and was an independent risk factor for survival. Overexpression of lncRNA CTBP1-DT promoted malignant biological behaviour of HGSOC cells, whereas its depletion induced growth arrest of HGSOC cells by vitro and in vivo assays. Mechanistically, lncRNA CTBP1-DT could competitively bind to miR-188-5p to protect MAP3K3 from degradation. Moreover, our results revealed that ETV5 could specifically interact with the promoter of lncRNA CTBP1-DT and activate its transcription. Collectively, these results reveal a novel ETV5/lncRNA CTBP1-DT/miR-188-5p/MAP3K3 pathway for HGSOC progression and suggest that lncRNA CTBP1-DT might be a potential biomarker and therapeutic target for HGSOC.


Author(s):  
Da-Hong Chen ◽  
Ji-Gang Zhang ◽  
Chuan-Xing Wu ◽  
Qin Li

Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.


Sign in / Sign up

Export Citation Format

Share Document