scholarly journals Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype

2002 ◽  
Vol 23 (6) ◽  
pp. 1065-1070 ◽  
Author(s):  
Jenifer I. Fenton ◽  
Margaret S. Wolff ◽  
Michael W. Orth ◽  
Norman G. Hord
2020 ◽  
Vol 17 (8) ◽  
pp. 993-1000
Author(s):  
Mengmeng Zhuang ◽  
Juan Le ◽  
Bo Zhu ◽  
Wenwen Zhang ◽  
Hao Yan ◽  
...  

Objective: Trefoil factor family is expressed in several tissues of the body and provides gastric and intestinal protection and healing. This research aims to indicate the mechanism involved in its function. Methods: The intestinal epithelial cells were pretreated with JAK inhibitor AG490 or the concentration of 60ug/ml human recombinant trefoil factor, while the levels of phospho-STAT3, E-cadherin and N-cadherin were detected by Western Blotting. The levels of Matrix Metalloproteinases, Ecadherin and N-cadherin were evaluated by quantitative real time PCR. The cell migration was assessed by the transwell assay and the scratch assay. The immunofluorescence method was performed to detect the reduction of molecular E-cadherin. Results: hTFF3 activates the JAK/STAT3 pathway in HT-29 cells. The effect of JAK/STAT3 pathway mechanism on cell migration promoted by hTFF3. TFF3 promoting cell migration is associated with increased gene transcription of MMPs. hTFF3 alters E-cadherin expression. hTFF3 activates the expression of N-cadherin and down-regulates E-cadherin expression in HT-29 Cells. Conclusion: We have shown that TFF3 activated the JAK/STAT3 pathway. TFF3 increased the level of Matrix Metalloproteinases and N-cadherin, decreased that of E-cadherin, while AG490 had the opposite effect. TFF3 accelerated cell migration and the AG490 relieved the migrating rate to control the levels. TFF3 activated JAK/STAT3 pathway which was associated with intestinal epithelial cell migration.


2001 ◽  
Vol 281 (2) ◽  
pp. F309-F317 ◽  
Author(s):  
Anne M. Romanic ◽  
Cynthia L. Burns-Kurtis ◽  
Zhaohui Ao ◽  
Anthony J. Arleth ◽  
Eliot H. Ohlstein

Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade the extracellular matrix (ECM). The membrane-type matrix metalloproteinases (MT-MMPs) are a new family of MMPs that differ from other MMPs in that they have a transmembrane domain that anchors them to the cell surface. MT-MMPs have been shown to function as receptors and activators for other MMPs and to localize extracellular matrix proteolysis at the pericellular region. Here we report on mRNA and protein expression of the fifth human MT-MMP (MT5-MMP), a 64-kDa protein that is capable of converting pro-MMP-2 to its active form, in human kidney as well as its upregulation in diabetes. We also demonstrate upregulation of the active form of MMP-2 in kidney samples from patients with diabetes. Through immunohistochemistry, MT5-MMP expression was localized to the epithelial cells of the proximal and distal tubules, the collecting duct, and the loop of Henle. Furthermore, the tubular epithelial cells that expressed MT5-MMP were associated with tubular atrophy. Because renal tubular atrophy is a significant factor in the pathogenesis of diabetic nephropathy and renal failure and the molecular mechanisms regulating this process remain unknown, it is hypothesized that the elevated expression of MT5-MMP contributes to the activation of pro-MMP-2, which participates in the remodeling of the proximal and distal tubules as well as in the collecting duct. These results provide the first evidence of the expression of a MT-MMP in diabetes and suggest a novel role for MT5-MMP in the pathogenesis of renal tubular atrophy and end-stage renal disease.


FEBS Journal ◽  
2013 ◽  
Vol 280 (24) ◽  
pp. 6541-6555 ◽  
Author(s):  
Anna Niarakis ◽  
Eleftheria Giannopoulou ◽  
Panagiota Ravazoula ◽  
Elias Panagiotopoulos ◽  
Ioannis K. Zarkadis ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masaya Hagiwara ◽  
Hisataka Maruyama ◽  
Masakazu Akiyama ◽  
Isabel Koh ◽  
Fumihito Arai

AbstractCollective migration of epithelial cells is a fundamental process in multicellular pattern formation. As they expand their territory, cells are exposed to various physical forces generated by cell–cell interactions and the surrounding microenvironment. While the physical stress applied by neighbouring cells has been well studied, little is known about how the niches that surround cells are spatio-temporally remodelled to regulate collective cell migration and pattern formation. Here, we analysed how the spatio-temporally remodelled extracellular matrix (ECM) alters the resistance force exerted on cells so that the cells can expand their territory. Multiple microfabrication techniques, optical tweezers, as well as mathematical models were employed to prove the simultaneous construction and breakage of ECM during cellular movement, and to show that this modification of the surrounding environment can guide cellular movement. Furthermore, by artificially remodelling the microenvironment, we showed that the directionality of collective cell migration, as well as the three-dimensional branch pattern formation of lung epithelial cells, can be controlled. Our results thus confirm that active remodelling of cellular microenvironment modulates the physical forces exerted on cells by the ECM, which contributes to the directionality of collective cell migration and consequently, pattern formation.


2021 ◽  
Vol 17 (6) ◽  
pp. 1079-1087
Author(s):  
Zaozao Chen ◽  
Qiwei Li ◽  
Shihui Xu ◽  
Jun Ouyang ◽  
Hongmei Wei

Matrix nanotopography plays an essential role in regulating cell behaviors including cell proliferation, differentiation, and migration. While studies on isolated single cell migration along the nanostructural orientation have been reported for various cell types, there remains a lack of understanding of how nanotopography regulates the behavior of collectively migrating cells during processes such as epithelial wound healing. We demonstrated that collective migration of epithelial cells was promoted on nanogratings perpendicular to, but not on those parallel to, the wound-healing axis. We further discovered that nanograting-modulated epithelial migration was dominated by the adhesion turnover process, which was Rho-associated protein kinase activity-dependent, and the lamellipodia protrusion at the cell leading edge, which was Rac1-GTPase activity-dependent. This work provides explanations to the distinct migration behavior of epithelial cells on nanogratings, and indicates that the effect of nanotopographic modulations on cell migration is cell-type dependent and involves complex mechanisms


Sign in / Sign up

Export Citation Format

Share Document