scholarly journals Consumption of Whole Eggs Promotes Insulin Sensitivity in Db/db Mice (OR34-01-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Peiran Lu ◽  
Lei Wu ◽  
Xin Guo ◽  
Siau Yen Wong ◽  
Stephen Clarke ◽  
...  

Abstract Objectives Chicken eggs have a high nutrient density. Some country guidelines recommend that people with type 2 diabetes (T2D) limit their consumption of eggs due to its high cholesterol content. However, several clinical studies showed that egg intake is associated with a lower risk of type 2 diabetes. In the current study, we sought to explore whether egg consumption improves insulin sensitivity and subsequent blood glucose management in type 2 diabetic db/db mice. Methods Six-week-old male db/db mice were fed a low-fat diet (LFD, 10 kCal % from fat) or LFD supplemented with 1% whole eggs (Egg) for 8 weeks. At the termination of the study, mice were fasted for 3 hrs prior to euthanization. Blood and other tissues were collected for laboratory assessments. Plasma metabolic parameters and pro-inflammatory cytokines were monitored by a clinical analyzer and ELISA, respectively. Hepatic and skeletal muscle mitochondrial respiratory activity was assessed by a Seahorse XFe Analyzer. Hepatic gene expression was analyzed by transcriptomics and confirmed by real-time PCR and/or Western blot. Results Egg consumption significantly increased body weight gain, lowered fasting blood glucose, insulin, and IL-6 levels, and elevated total cholesterol, HDL, LDL, and GLP-1 levels. Only the basal mitochondrial respiratory activity was decreased, and the complex II respiratory activity was increased in gastrocnemius muscles in mice fed Egg. Hepatic mitochondrial activity was not altered by diet. Mechanistically, transcriptomics results revealed that hepatic genes involved in enhanced insulin sensitivity were highly expressed, but genes in endogenous cholesterol synthesis were significantly suppressed after egg consumption. Conclusions The results suggest that egg consumption is beneficial to blood glucose control in type 2 diabetic mice. Type 2 diabetic animal could manage the cholesterol level through suppression of de novo cholesterol synthesis when consuming a high cholesterol diet, e.g., egg diet. Funding Sources National egg nutrition center grant USDA NIFA grant

2020 ◽  
Vol 45 (4) ◽  
pp. 397-404
Author(s):  
Tugba Gurpinar Çavuşoğlu ◽  
Ertan Darıverenli ◽  
Kamil Vural ◽  
Nuran Ekerbicer ◽  
Cevval Ulman ◽  
...  

AbstractObjectivesType 2 diabetes is a common metabolic disease and anxiety disorders are very common among diabetics. Buspirone is used in the treatment of anxiety, also having blood glucose-lowering effects. The aim of the study was to investigate the effects of buspirone on the glucose and lipid metabolism as well as vascular function in type 2 diabetic rats.MethodsA type 2-diabetic model was induced through a high-fat diet for eight weeks followed by the administration of low-dose streptozotocin (35 mg/kg, intraperitoneal) in rats. Buspirone was given at two different doses (1.5 mg/kg/d and 5 mg/kg/d) and combined with metformin (300 mg/kg/d). The fasting glucose and insulin levels, lipid profile were analyzed, and vascular response measured from the thoracic aorta was also evaluated.ResultsBoth doses of buspirone caused a significant improvement in fasting blood glucose levels. In particular, the buspirone treatment, combined with metformin, improved endothelial dysfunction and was found to be correlated with decreased nitrate/nitrite levels.ConclusionsBuspirone may be effective in the treatment of type 2 diabetes, either alone or in combination with other treatments, particularly in terms of endothelial dysfunction, inflammation and impaired blood glucose, and insulin levels.


2019 ◽  
Vol 6 (3) ◽  
pp. 786
Author(s):  
Eda Dayakar ◽  
C. Sathya Sree ◽  
E. Sanjay

Background: Diabetes mellitus is a common health problem globally. Dyslipidaemia is a major risk factor to develop cardiovascular disease in diabetics. They present study was undertaken to find out the prevalence of dyslipidaemia in type 2 diabetic patients.Methods: The present study was a cross sectional study consisting of 46 (23 male and 23 female) known type 2 diabetes mellitus patients. Age, gender, duration of diabetes, body mass index (BMI) was recorder in all the diabetic patients.  Fasting blood glucose levels, total cholesterol, triglycerides, HDL, LDL, VLDL levels were measured using standard methods and recorded.Results: The average total cholesterol, triglycerides, LDL, HDL and VLDL were 200±42mg/dl, 169.62±89.79mg/dl, 132.45±36.38mg/dl,39.1±16.6mg/dl and 35.85±17.09mg/dl respectively. The incidence of occurrence of hypercholesterolemia was 58.6% and hypertriglyceridemia 36.9%. Increased levels of LDL were observed in 30 (65.2%) patients and reduced HDL was observed in 43 (93.4%) patients. The incidence rate of dyslipidaemia was higher in female diabetic patients when compared to male diabetic patients.Conclusions: Awareness on the dyslipidaemia and its risk factors should be provided to the type 2 diabetic patients as they are more prone to get cardiovascular disease and lipid profile also should be monitored regularly along with blood glucose levels.


2019 ◽  
Vol 3 (4) ◽  
Author(s):  
Cassondra J Saande ◽  
Megan A Steffes ◽  
Joseph L Webb ◽  
Rudy J Valentine ◽  
Matthew J Rowling ◽  
...  

Author(s):  
Thomas Joseph James ◽  
Jo Corbett ◽  
Michael H. Cummings ◽  
Sharon Allard ◽  
John S. Young ◽  
...  

Type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia and progressive insulin resistance, leading to macro and microvascular dysfunction. Passive heating has potential to improve glucose homeostasis and act as an exercise mimetic. We assessed the effect of acute passive heating before or during an oral glucose tolerance test (OGTT) in people with T2DM. Twelve people with T2DM were randomly assigned to 3 conditions:1) 3 h OGTT (CON); 2) 1 h passive heating (40 °C water) 30 min before an OGTT (HOT-OGTT); and 3) 1 h passive heating (40 °C water) 30 min after commencing an OGTT (OGTT-HOT). Blood [glucose], insulin sensitivity, extracellular heat shock protein 70 (eHSP70), total energy expenditure (TEE), heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were recorded. Passive heating did not alter blood [glucose] (CON, 1,677 (386) a.u.; HOT-OGTT, 1,797 (340) a.u.; OGTT-HOT, 1,662 (364) a.u.; P = 0.28), insulin sensitivity (P = 0.15), or SBP (P = 0.18), but did increase [eHSP70] in both heating conditions (CON, 203.48 (110.81) pg·mL-1; HOT-OGTT, 402.47 (79.02) pg·mL-1; OGTT-HOT, 310.00 (60.53) pg·mL-1; P < 0.001), increased TEE (via fat oxidation) in the OGTT-HOT condition (CON, 263 (33) kcal; HOT-OGTT, 278 (40) kcal; OGTT-HOT, 304 (38) kcal; P = 0.001), increased HR in both heating conditions (P < 0.001) and reduced DBP in OGTT-HOT condition (P < 0.01). Passive heating in close proximity to a glucose challenge does not alter glucose tolerance but does increase [eHSP70] and TEE, and reduce blood pressure in people with T2DM.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xinlei Wang ◽  
Xiaoqin Zhao ◽  
Yunjuan Gu ◽  
Xiaohui Zhu ◽  
Tong Yin ◽  
...  

In China, most normal BMI (body mass index of ≥18.5 to <25 kg/m2) adults with type 2 diabetes (T2DM) exhibit visceral adiposity. This study compared the effects of exenatide and humalog Mix25 on normal BMI patients with T2DM and visceral adiposity. A total of 95 patients were randomized to receive either exenatide or humalog Mix25 treatment for 24 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were quantified by magnetic resonance imaging (MRI) and liver fat content (LFC) by liver proton magnetic resonance spectroscopy (1H MRS). Each patient’s weight, waist circumference, BMI, blood glucose, insulin sensitivity, pancreatic β-cell function, and fibroblast growth factor 21 (FGF-21) levels were measured. Data from 81 patients who completed the study (40 and 41 in the exenatide and humalog Mix25 groups, respectively) were analysed. The change in 2 h plasma blood glucose was greater in the exenatide group (P=0.039). HOMA-IR and MBCI improved significantly after exenatide therapy (P<0.01, P=0.045). VAT and LFC decreased in both groups (P<0.01 for all) but to a greater extent in the exenatide group, while SAT only decreased with exenatide therapy (P<0.01). FGF-21 levels declined more in the exenatide group (P<0.01), but were positively correlated with VAT in the entire cohort before (r=0.244, P=0.043) and after (r=0.290, P=0.016) the intervention. The effects of exenatide on glycaemic metabolism, insulin resistance, pancreatic β-cell function, and fat deposition support its administration to normal BMI patients with T2DM and visceral adiposity.


2009 ◽  
Vol 204 (2) ◽  
pp. 143-152 ◽  
Author(s):  
J Han ◽  
Y Q Liu

Pyruvate carboxylase (PC) activity is enhanced in the islets of obese rats, but it is reduced in the islets of type 2 diabetic rats, suggesting the importance of PC in β-cell adaptation to insulin resistance as well as the possibility that PC reduction might lead to hyperglycemia. However, the causality is currently unknown. We used obese Agouti mice (AyL) as a model to show enhanced β-cell adaptation, and type 2 diabetic db/db mice as a model to show severe β-cell failure. After comparison of the two models, a less severe type 2 diabetic Agouti-K (AyK) mouse model was used to show the changes in islet PC activity during the development of type 2 diabetes mellitus (T2DM). AyK mice were separated into two groups: mildly (AyK-M, blood glucose <250 mg/dl) and severely (AyK-S, blood glucose >250 mg/dl) hyperglycemic. Islet PC activity, but not protein level, was increased 1.7-fold in AyK-M mice; in AyK-S mice, islet PC activity and protein level were reduced. All other changes including insulin secretion and islet morphology in AyK-M mice were similar to those observed in AyL mice, but they were worse in AyK-S mice where these parameters closely matched those in db/db mice. In 2-day treated islets, PC activity was inhibited by high glucose but not by palmitate. Our findings suggest that islet PC might play a role in the development of T2DM where reduction of PC activity might be a consequence of mild hyperglycemia and a cause for severe hyperglycemia.


2008 ◽  
Vol 115 (9) ◽  
pp. 273-281 ◽  
Author(s):  
Matthew D. Hordern ◽  
Louise M. Cooney ◽  
Elaine M. Beller ◽  
Johannes B. Prins ◽  
Thomas H. Marwick ◽  
...  

The aim of the present study was to determine the effects of a 4-week exercise training intervention on blood glucose, insulin sensitivity, BMI (body mass index) and cardiorespiratory fitness in patients with Type 2 diabetes, and to identify and establish criteria for patients who are more likely to improve their blood glucose from short-term exercise training. A randomized, controlled trial of exercise training, comprising two supervised and one non-supervised sessions of individualized cardiorespiratory and resistance exercise per week, was performed in 132 healthy patients with Type 2 diabetes (exercise training group, n=68), with the aim of accumulating a minimum of 150 min of moderate-intensity exercise for 4 weeks. BMI, waist circumference, blood pressure, blood lipid profile, blood glucose, insulin, insulin sensitivity [calculated by HOMAIR (homoeostasis model assessment of insulin resistance) and QUICKI (quantitative insulin check index)], β-cell function (calculated by HOMAβ-Cell), HbA1c (glycated haemoglobin) and V̇O2max (maximal oxygen consumption) were measured at baseline and at 4 weeks. The exercise training group had significant improvements in V̇O2max, BMI and triacylglycerols (triglycerides). There were no significant changes in blood glucose, HOMAIR, QUICKI or HOMAβ-Cell. Decreases in blood glucose were significantly predicted by baseline blood glucose and HbA1c, with these variables accounting for 15.9% of the change in blood glucose (P<0.001). ROC (receiver operator characteristic) curve analysis revealed that patients with a blood glucose >8.85 mmol/l (sensitivity=73%, specificity=78%) and HbA1c >7.15% (sensitivity=79%, specificity=60%) were more likely to achieve a clinically significant decrease in blood glucose. In conclusion, in apparently healthy patients with Type 2 diabetes, a 4-week exercise intervention improved cardiorespiratory fitness, BMI and triacylglycerols. Elevated blood glucose and HbA1c predicted improvements in blood glucose.


2017 ◽  
Vol 4 (S) ◽  
pp. 166
Author(s):  
Anh Nguyen Tu Bui ◽  
Cong Le Thanh Nguyen ◽  
Anh Thi Minh Nguyen ◽  
Nhat Chau Truong ◽  
Ngoc Kim Phan ◽  
...  

Background: Type 2 diabetes (T2D) is the most common form of diabetes and accounts for 90-95% of all existing diabetic cases. The main etiologies of T2D include insulin resistance in target tissues, insufficient secretion of insulin and subsequent decline of pancreatic β-cell function. Recently, many studies have suggested that adipose – derived stem cells (ASCs) were potential to alleviate insulin resistance and hyperglycemia and promote the islets repair. In this study, ASCs were hypothesized that they could have ameliorative effects on type 2 diabetic mice.  Methods: Type 2 diabetic mice were induced by a combination of high-fat diet and injection of STZ 100 mg/kg and NA 120 mg/kg. Thereafter, two doses of 106 human ASCs were transplanted 2 week interval into each mouse via the tail vein. The mice were monitored health condition, rate of mortaity, body weight, consumption of food and water, blood glucose level, serum insulin level and histological structure of pancreatic islets.  Results: Our results indicated that the ASC-treated mice expressed improved condition in comparision with non-treated diabetic mice. The consumption of food and water as well as the blood glucose level decreased. Simultaneously, ASC transplantation improved the impaired glucose tolerance and insulin tolerance in T2D mice. Besides, the total cholesterol have significantly decreased.  Conclusion: it is suggested that human ASCs infusion is safe and effective for type 2 diabetes mellitus in mice regarding the improved glucose metabolism and insulin resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Qinghua Zhang ◽  
Yingying Huang ◽  
Xiaojin Li ◽  
Hongyi Liu ◽  
Baichuan He ◽  
...  

Insulin resistance (IR) is a vital hallmark of type 2 diabetes mellitus, which is characterized by an impaired ability of insulin to promote glucose uptake and utilization. Lipid deposition is closely associated with impaired insulin sensitivity. PPARγ plays an important role in glucose homeostasis, adipocyte differentiation, and insulin sensitivity. Likewise, DGAT2 also exerts a crucial role in integrating carbohydrate and lipid metabolism in the liver. The present study is aimed at evaluating a Chinese medicinal formula, Tangduqing granules (TDQ), with multifaceted actions against lipid and glucose metabolism disorder and IR of type 2 diabetes. An animal model of type 2 diabetes was developed by high-fat diet feeding plus low-dose streptozotocin injection. After oral administration of TDQ for 5 weeks, the effects on glucose and lipid metabolism and the underlying mechanism were evaluated by biochemical, histological, RT-PCR, and western blotting methods. The results showed that TDQ decreased fasting blood glucose, ameliorated glucose tolerance, and improved IR. Besides, TDQ regulated hyperlipidemia symptoms, decreased serum lipid levels and liver TG, and reduced hepatic steatosis in a type 2 diabetic rat model. Furthermore, TDQ reversed diabetes-induced decrease in the mRNA and protein expression of PPARγ and elevation in the mRNA and protein levels of DGAT2 in the liver. In addition, we showed that interference of TDQ ameliorated palmitate-induced glucose and lipid metabolic abnormalities in HepG2 cells. TDQ are, therefore, a potential Chinese medicinal formula that relieves IR and lipid metabolism disorder might be through promotion of PPARγ and decrease of DGAT2 expression.


Sign in / Sign up

Export Citation Format

Share Document