scholarly journals Method for Modeling the Small Intestine and Resident Microbiome Through in Vitro Fermentation (P20-001-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Laurel Doherty ◽  
Jordan Whitman ◽  
Steven Arcidiacono ◽  
Karen Conca ◽  
Jason Soares

Abstract Objectives The human small intestine is a complex and dynamic organ tasked with enzymatic digestion and absorption of nutrients. Design of a small intestine model can provide detailed systematic knowledge of these processes; model design challenges include differential pH and oxygen availability along the length of the small intestine, food-dependent host secretion of digestive compounds, complex nutrient absorption processes, and microbiome interactions with both food and host. Numerous in vitro models have been developed to simulate the small intestine, but physiological relevance is limited. Here, we present an in vitro fermentation model of the small intestine to include microbiota and enhance physiological relevance. Methods A stepwise biofidelic model design approach was implemented with initial stages consisting of simulating ileum conditions, including pH and residence time, utilizing an automated bioreactor system for real-time monitoring and control of fermentation parameters, with incorporation of digestive enzymes and bile acids for breakdown of food inputs. Nutrient absorption, simulated using hollow-fiber columns to emulate passive diffusion, was initially optimized using small molecules to mimic dietary digestion byproducts; validation with food components, such as starch or whey powder, is planned. A mock microbial community, with organisms selected to represent major phyla and functions of the small intestine microbiota, was designed, implemented, and characterized in fermentations representing “fed-state” ileum conditions. Results Design and validation of the model with mock food components will be presented, along with steps taken to integrate in situ nutrient absorption and mock microbial community. Initial characterization of the microbial community indicates synergistic growth dynamics and nutrient utilization under “fed-state” conditions. Conclusions These efforts will be the foundation for our long-term goal of simulating the small intestine to complement our large intestine fermentation model, jA2COB, creating a complete in vitro fermentation model of the lower GI tract. Insight gleaned from this model, alone or in concert with in vivo studies, can inform nutritional strategies to restore and maintain host gut homeostasis. Funding Sources Funded by U.S. Army NSRDEC core applied research funds.

2021 ◽  
Vol 114 ◽  
pp. 106560
Author(s):  
Alexander T. Bui ◽  
Barbara A. Williams ◽  
Nida Murtaza ◽  
Allan Lisle ◽  
Deirdre Mikkelsen ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Frederick J. Warren ◽  
Naoki M. Fukuma ◽  
Deirdre Mikkelsen ◽  
Bernadine M. Flanagan ◽  
Barbara A. Williams ◽  
...  

ABSTRACT Starch is a major source of energy in the human diet and is consumed in diverse forms. Resistant starch (RS) escapes small intestinal digestion and is fermented in the colon by the resident microbiota, with beneficial impacts on colonic function and host health, but the impacts of the micro- and nanoscale structure of different physical forms of food starch on the broader microbial community have not been described previously. Here, we use a porcine in vitro fermentation model to establish that starch structure dramatically impacts microbiome composition, including the key amylolytic species, and markedly alters both digestion kinetics and fermentation outcomes. We show that three characteristic food forms of starch that survive digestion in the small intestine each give rise to substantial and distinct changes in the microbiome and in fermentation products. Our results highlight the complexity of starch fermentation processes and indicate that not all forms of RS in foods are degraded or fermented in the same way. This work points the way for the design of RS with tailored degradation by defined microbial communities, informed by an understanding of how substrate structure influences the gut microbiome, to improve nutritive value and/or health benefits. IMPORTANCE Dietary starch is a major component in the human diet. A proportion of the starch in our diet escapes digestion in the small intestine and is fermented in the colon. In this study, we use a model of the colon, seeded with porcine feces, in which we investigate the fermentation of a variety of starches with structures typical of those found in foods. We show that the microbial community changes over time in our model colon are highly dependent on the structure of the substrate and how accessible the starch is to colonic microbes. These findings have important implications for how we classify starches reaching the colon and for the design of foods with improved nutritional properties.


LWT ◽  
2020 ◽  
pp. 110524
Author(s):  
Yuzhu Zhu ◽  
Jia-Min Zhou ◽  
Wei Liu ◽  
Xionge Pi ◽  
Qingqing Zhou ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 800 ◽  
Author(s):  
Hannah Harris ◽  
Christine Edwards ◽  
Douglas Morrison

Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required.


2019 ◽  
Vol 20 (8) ◽  
pp. 1925 ◽  
Author(s):  
Tsitko ◽  
Wiik-Miettinen ◽  
Mattila ◽  
Rosa-Sibakov ◽  
Maukonen ◽  
...  

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


2005 ◽  
Vol 123-124 ◽  
pp. 687-702 ◽  
Author(s):  
Yu Lan ◽  
Barbara A. Williams ◽  
Seerp Tamminga ◽  
Huug Boer ◽  
Antoon Akkermans ◽  
...  

1984 ◽  
Vol 64 (5) ◽  
pp. 41-42
Author(s):  
C. J. LISTER ◽  
R. R. SMITHARD

In-vitro incubations with rumen fluid from four wethers showed that glucose, glucitol and mannitol were fermented more rapidly than arabinitol and xylitol and that arabinitol was fermented more rapidly than xylitol (P < 0.05) when the alditols or sugar were added singly. When arabinitol and xylitol or mannitol and xylitol were added as mixtures there was no effect on rates of individual alditol fermentation. Measurement of alditols reaching the duodenum and subsequently the terminal ileum of three sheep given an alditol mixture via the rumen showed that less than half the pentitols entering the small intestine were absorbed there. When higher levels of alditols entered the small intestine by infusion into the duodenum, absorption of pentitols was less efficient than that of the hexitols, mannitol and glucitol. Key words: Alditols, fermentation, rumen fluid, absorption


2020 ◽  
Vol 11 ◽  
Author(s):  
Wayne Young ◽  
Sai Krishna Arojju ◽  
Mark R. McNeill ◽  
Elizabeth Rettedal ◽  
Jessica Gathercole ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document