Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes

2020 ◽  
Vol 30 (6) ◽  
pp. 3717-3730
Author(s):  
Sanguo Zhang ◽  
Huanhuan Joyce Wang ◽  
Jia Li ◽  
Xiao-Ling Hu ◽  
Qin Shen

Abstract Angiogenesis in the developing cerebral cortex accompanies cortical neurogenesis. However, the precise mechanisms underlying cortical angiogenesis at the embryonic stage remain largely unknown. Here, we show that radial glia-derived vascular cell adhesion molecule 1 (VCAM1) coordinates cortical vascularization through different enrichments in the proximal and distal radial glial processes. We found that VCAM1 was highly enriched around the blood vessels in the inner ventricular zone (VZ), preventing the ingrowth of blood vessels into the mitotic cell layer along the ventricular surface. Disrupting the enrichment of VCAM1 surrounding the blood vessels by a tetraspanin-blocking peptide or conditional deletion of Vcam1 gene in neural progenitor cells increased angiogenesis in the inner VZ. Conversely, VCAM1 expressed in the basal endfeet of radial glial processes promoted angiogenic sprouting from the perineural vascular plexus (PNVP). In utero, overexpression of VCAM1 increased the vessel density in the cortical plate, while knockdown of Vcam1 accomplished the opposite. In vitro, we observed that VCAM1 bidirectionally affected endothelial cell proliferation in a concentration-dependent manner. Taken together, our findings identify that distinct concentrations of VCAM1 around VZ blood vessels and the PNVP differently organize cortical angiogenesis during late embryogenesis.

2014 ◽  
Vol 9 (4) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Seon-Il Park ◽  
Toshiro Ohta ◽  
Shigenori Kumazawa ◽  
Mira Jun ◽  
Mok-Ryeon Ahn

Propolis, a sticky material that honeybees collect from living plants, has been used for its pharmaceutical properties since ancient times. In this study, we examined the effects of ethanol extracts of Korean propolis (EEKP) from various geographic regions on the inhibition of angiogenesis, both in vitro and in vivo. The effects of EEKP were tested on in vitro models of angiogenesis, that is, tube formation and proliferation of human umbilical vein endothelial cells (HUVECs). All EEKP samples exhibited significant inhibitory effects on tube formation of HUVECs in a concentration-dependent manner (6.25-25 μg/mL). In addition, two EEKP samples, prepared from Uijeongbu and Pyoseon propolis, significantly suppressed the proliferation of HUVECs in a concentration-dependent manner (3.13-25 μg/mL). Furthermore, in an in vivo angiogenesis assay using the chick embryo chorioallantoic membrane (CAM) system, we found that the two EEKP samples significantly reduced the number of newly formed vessels. These results indicate that Korean propolis may have potential applications in the prevention and treatment of angiogenesis-related diseases such as cancer.


1995 ◽  
Vol 82 (1) ◽  
pp. 221-235 ◽  
Author(s):  
W. A. Boyle ◽  
G. M. Maher

Background Whether volatile anesthetics produce changes in vascular resistance and blood flow because of direct effects on vascular tissue is unclear. Direct vasoconstricting and vasodilating actions have been demonstrated in isolated conductance arteries in vitro, but there is little information regarding direct effects on the small vessels that mediate resistance and flow changes in vivo. Methods We investigated the actions of halothane on 50-200 microM branches of the rat mesenteric artery that were cannulated and studied in vitro. The vessels were pressurized to 60 mmHg, and vascular dimensions were continuously monitored using a computer-based real-time image analysis system. The vessel bath was perfused with HCO3(-)-buffered saline (37 degrees C) equilibrated with 95% O2/5% CO2 (+/- halothane). The vascular endothelium was mechanically removed before cannulation in some vessels. Results In unstimulated vessels, halothane had a concentration-dependent vasoconstricting action (EC50 = 0.45 mM approximately 1.5 vol% at 37 degrees C) that was largely transient and was similar to that produced by caffeine. Both halothane and caffeine constrictions were unaffected by bath [Ca2+], nifedipine (1 microM) or Cd2+ (100 microM) and were abolished by ryanodine (10 microM). In addition, caffeine responses were attenuated by halothane in a concentration-dependent manner (EC50 = 1.6 mM). In vessels preconstricted with KCl (40 mM) or phenylephrine (10(-6) M), halothane produced transient constriction followed by concentration-dependent vasodilation. Ryanodine, which abolished halothane constrictions, had little effect on the amplitude of KCl- or phenylephrine-induced constrictions or the vasodilating action of halothane. Removal of the endothelium likewise had little effect on the vasoconstricting or the vasodilating actions of halothane in unstimulated, KCl- or phenylephrine-constricted vessels. Halothane completely relaxed KCl and phenylephrine constrictions with EC50 values of 0.36 mM (1.2% at 37 degrees C) and 0.75 mM (2.5%), respectively, in intact vessels before ryanodine; 0.25 mM (0.8%) and 0.59 mM (1.9%) in intact vessels after ryanodine; and 0.52 mM (1.7%) and 0.67 mM (2.2%) in endothelium-denuded vessels. Conclusions Halothane has endothelium-independent vasoconstricting and vasodilating actions in isolated mesenteric resistance blood vessels. The vasoconstricting action appears to involve halothane-induced Ca2+ release from caffeine/ryanodine-sensitive intracellular store(s). The vasodilating action in phenylephrine- or KC1-constricted vessels is independent of the Ca(2+)-releasing action and most likely involves an effect(s) on sarcolemmal-dependent Ca2+ signaling (e.g., extracellular Ca2+ influx) and/or Ca2+ activation of contractile proteins. The magnitude of both the vasoconstricting and the vasodilating actions of halothane in these vessels at clinically relevant concentrations suggests these direct actions contribute to the overall cardiovascular effects of halothane in vivo.


2000 ◽  
Vol 278 (3) ◽  
pp. R628-R639 ◽  
Author(s):  
Zhi-Wei Yang ◽  
Asefa Gebrewold ◽  
Maja Nowakowski ◽  
Bella T. Altura ◽  
Burton M. Altura

In vitro extracellular Mg2+ concentration ([Mg2+]0) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg2+ on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N G-monomethyl-l-arginine (l-NMMA), N ω-nitro-l-arginine methyl ester (l-NAME), or methylene blue. The inhibitory effects of l-NMMA and l-NAME could be reversed partly by l-arginine. [Mg2+]0-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N G-nitro-l-arginine andl-NMMA. Removal of extracellular Ca2+concentration ([Ca2+]0) or buffering intracellular Ca2+ concentration in endothelial cells, with 10 μM 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg2+. Mg2+ produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca2+]0 diminished the increased NO release induced by elevated levels of [Mg2+]0. In vivo infusion of increasing doses (1–30 μM/min) of MgSO4, directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO4, intravenous administration of either l-NMMA (10 mg/kg) orl-NAME (10 mg/kg) increased (i.e., reversed) the MgSO4-lowered blood pressure markedly, and intravenous injection of l-arginine restored partially the increased blood pressure effects of both l-NMMA andl-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg2+dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg2+ is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca2+ and formation of guanosine 3′,5′-cyclic monophosphate.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


2021 ◽  
Vol 14 (3) ◽  
pp. 220
Author(s):  
Claudia Taborda Gómez ◽  
Fabiana Lairion ◽  
Marisa Repetto ◽  
Miren Ettcheto ◽  
Amalia Merelli ◽  
...  

Cannabidiol (CBD), a lipophilic cannabinoid compound without psychoactive effects, has emerged as adjuvant of anti-epileptic drugs (AEDs) in the treatment of refractory epilepsy (RE), decreasing the severity and/or frequency of seizures. CBD is considered a multitarget drug that could act throughout the canonical endocannabinoid receptors (CB1-CB2) or multiple non-canonical pathways. Despite the fact that the CBD mechanism in RE is still unknown, experiments carried out in our laboratory showed that CBD has an inhibitory role on P-glycoprotein excretory function, highly related to RE. Since CB2 is expressed mainly in the immune cells, we hypothesized that CBD treatment could alter the activity of polymorphonuclear neutrophils (PMNs) in a similar way that it does with microglia/macrophages and others circulating leukocytes. In vitro, CBD induced PMN cytoplasmatic vacuolization and proapoptotic nuclear condensation, associated with a significantly decreased viability in a concentration-dependent manner, while low CBD concentration decreased PMN viability in a time-dependent manner. At a functional level, CBD reduced the chemotaxis and oxygen consumption of PMNs related with superoxide anion production, while the singlet oxygen level was increased suggesting oxidative stress damage. These results are in line with the well-known CBD anti-inflammatory effect and support a potential immunosuppressor role on PMNs that could promote an eventual defenseless state during chronic treatment with CBD in RE.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document