scholarly journals The Modulation of PCSK9 and LDLR by Supercritical CO2 Extracts of Mentha longifolia and Isolated Piperitone Oxide, an In Vitro Study

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.

2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.


2020 ◽  
Vol 42 (4) ◽  
pp. 564-564
Author(s):  
Ju liu Ju liu ◽  
Jun Li Jun Li ◽  
Jian tao Shi Jian tao Shi ◽  
Jie Li Jie Li ◽  
Xue chen Hao Xue chen Hao ◽  
...  

A series of novel 4-phenylaminobenzofuro[2,3-d]pyrimidine derivatives had been prepared and assessed for their in vitro antiproliferative activities against three lung cancer cell lines (A549, H460 and H1975). The bioassay results showed most of the designed compounds exhibited potential antiproliferation activities. Among them, compound 8f exhibited remarkable inhibitory activity against A549 and H460 cell lines with IC50 value of 2.54 μM and 2.68 μM, respectively, which was comparable to that of the positive control sorafenib (IC50 = 2.69 μM for A549 and 3.71 μM for H460). AO/EB staining suggests that compound 8f could induce apoptosis in A549 cells. Furthermore, cell cycle analyses show that compound 8f increased G0/G1 A549 cells arrest in a concentration-dependent manner. The preliminary structure-activity relationships (SARs) studies indicated that mono-electron-withdrawing groups (mono-EWGs) on the phenyl ring are positive on the antitumor activity.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2108 ◽  
Author(s):  
Chuanming Zhang ◽  
Xiaoyu Tan ◽  
Jian Feng ◽  
Ning Ding ◽  
Yongpeng Li ◽  
...  

To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 362 ◽  
Author(s):  
Amélia M. Silva ◽  
Helen L. Alvarado ◽  
Guadalupe Abrego ◽  
Carlos Martins-Gomes ◽  
Maria L. Garduño-Ramirez ◽  
...  

Oleanolic (OA) and ursolic (UA) acids are recognized triterpenoids with anti-cancer properties, showing cell-specific activity that can be enhanced when loaded into polymeric nanoparticles. The cytotoxic activity of OA and UA was assessed by Alamar Blue assay in three different cell lines, i.e., HepG2 (Human hepatoma cell line), Caco-2 (Human epithelial colorectal adenocarcinoma cell line) and Y-79 (Human retinoblastoma cell line). The natural and synthetic mixtures of these compounds were tested as free and loaded in polymeric nanoparticles in a concentration range from 2 to 32 µmol/L. The highest tested concentrations of the free triterpene mixtures produced statistically significant cell viability reduction in HepG2 and Caco-2 cells, compared to the control (untreated cells). When loaded in the developed PLGA nanoparticles, no differences were recorded for the tested concentrations in the same cell lines. However, in the Y-79 cell line, a decrease on cell viability was observed when testing the lowest concentration of both free triterpene mixtures, and after their loading into PLGA nanoparticles.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 166
Author(s):  
Sabrina Radakovic ◽  
Nicola Andreoli ◽  
Simon Schmid ◽  
Sandor Nietzsche ◽  
Jürg Zumbrunn ◽  
...  

The aims of the present study were: (a) to determine the mechanism of action of taurolidine against bacterial species associated with periodontal disease, and (b) to evaluate the potential development of resistance against taurolidine as compared with minocycline. After visualizing the mode of action of taurolidine by transmission electron micrographs, the interaction with most important virulence factors (lipopolysaccharide (LPS), Porphyromonas gingivalis gingipains, Aggregatibacter actinomycetemcomitans leukotoxin), was analyzed. Then, 14 clinical isolates from subgingival biofilm samples were transferred on agar plates containing subinhibitory concentrations of taurolidine or minocycline up to 50 passages. Before and after each 10 passages, minimal inhibitory concentrations (MICs) were determined. Increasing MICs were screened for efflux mechanism. Taurolidine inhibited in a concentration-dependent manner the activities of LPS and of the arginine-specific gingipains; however, an effect on A. actinomycetemcomitans leukotoxin was not detected. One P. gingivalis strain developed a resistance against taurolidine, which was probably linked with efflux mechanisms. An increase of MIC values of minocycline occurred in five of the 14 included strains after exposure to subinhibitory concentrations of the antibiotic. The present results indicate that: (a) taurolidine interacts with LPS and gingipains, and (b) development of resistance seems to be a rare event when using taurolidine.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 345
Author(s):  
Xi-Feng Jin ◽  
Gerald Spöttl ◽  
Julian Maurer ◽  
Svenja Nölting ◽  
Christoph Josef Auernhammer

Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4359-4359
Author(s):  
Gerald Schrenk ◽  
Katalin Varadi ◽  
Herbert Gritsch ◽  
Hanspeter Rottensteiner ◽  
Hartmut J. Ehrlich ◽  
...  

Abstract Abstract 4359 Baxter and Nektar have developed BAX 855, a longer-acting PEGylated form of Baxter’s recombinant FVIII (ADVATE process) using stable PEG technology from Nektar. BAX 855 was functionally characterized in vitro and its features were compared with those of the unmodified parent rFVIII. The overall hemostatic potency of BAX 855 was assessed using a thrombin generation assay. Human FVIII-deficient plasma containing less than 1% of FVIII was supplemented with different concentrations of BAX 855 and unmodified rFVIII and coagulation was triggered by adding a small amount of recombinant human tissue factor complexed with phospholipid (PL) micelles to the plasma. Similar to unmodified rFVIII, BAX 855 corrected the impaired thrombin generation of the FVIII deficient plasma in a concentration-dependent manner. The role of FVIII within the tenase complex was determined by measuring the kinetics of FXa generation with a FIXa-cofactor activity assay, using either untreated or thrombin activated BAX 855. Comparison of the kinetic parameters and the maximum FXa generated revealed similar characteristics between BAX 855 and unmodified rFVIII. A similar approach revealed that BAX 855 fully retained its ability to be activated and inactivated by thrombin. The susceptibility of BAX 855 to activated protein C (APC) inactivation was also similar for BAX 855 and unmodified rFVIII. The binding affinities for VWF were similar for unmodified rFVIII (KD 0.6 nM) and BAX 855 (KD 0.8 nM) and the binding capacity of BAX 855 was also only slightly reduced. In contrast, the binding capacity of BAX 855 to the low-density lipoprotein-receptor-related protein (LRP) clearance receptor was 55% less than that of the unmodified rFVIII. In summary, the functional properties of BAX 855 were fully retained, indicating that PEGylation did not have an impact on the functional properties of rFVIII. Disclosures: Schrenk: Baxter Innovations GmbH: Employment. Varadi:Baxter Innovations GmbH: Employment. Gritsch:Baxter Innovations GmbH: Employment. Rottensteiner:Baxter Innovations GmbH: Employment. Ehrlich:Baxter Innovations GmbH: Employment. Scheiflinger:Baxter Innovations GmbH: Employment. Turecek:Baxter Innovations GmbH: Employment.


Sign in / Sign up

Export Citation Format

Share Document