scholarly journals Myrica rubraExtracts Protect the Liver from CCl4-Induced Damage

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Lizhi Xu ◽  
Jing Gao ◽  
Yucai Wang ◽  
Wen Yu ◽  
Xiaoning Zhao ◽  
...  

The relationship between the expression of mitochondrial voltage-dependent anion channels (VDACs) and the protective effects ofMyrica rubraSieb. Et Zucc fruit extract (MCE) against carbon tetrachloride (CCl4)-induced liver damage was investigated. Pretreatment with 50 mg kg−1, 150 mg kg−1or 450 mg kg−1MCE significantly blocked the CCl4-induced increase in both serum aspartate aminotransferase (sAST) and serum alanine aminotransferase (sALT) levels in mice (P< .05 or .01 versus CCl4group). Ultrastructural observations of decreased nuclear condensation, ameliorated mitochondrial fragmentation of the cristae and less lipid deposition by an electron microscope confirmed the hepatoprotection. The mitochondrial membrane potential dropped from −191.94 ± 8.84 mV to −132.06 ± 12.26 mV (P< .01) after the mice had been treated with CCl4. MCE attenuated CCl4-induced mitochondrial membrane potential dissipation in a dose-dependent manner. At a dose of 150 or 450 mg kg−1of MCE, the mitochondrial membrane potentials were restored (P< .05). Pretreatment with MCE also prevented the elevation of intra-mitochondrial free calcium as observed in the liver of the CCl4-insulted mice (P< .01 versus CCl4group). In addition, MCE treatment (50–450 mg kg−1) significantly increased both transcription and translation of VDAC inhibited by CCl4. The above data suggest that MCE mitigates the damage to liver mitochondria induced by CCl4, possibly through the regulation of mitochondrial VDAC, one of the most important proteins in the mitochondrial outer membrane.

2005 ◽  
Vol 33 (04) ◽  
pp. 627-637 ◽  
Author(s):  
Xin-Hui Tang ◽  
Jing Gao ◽  
Feng Fang ◽  
Jin Chen ◽  
Li-Zhi Xu ◽  
...  

The protective effects of oleanolic acid (OA) on carbon tetrachloride (CCl4)-induced liver mitochondrial damage and the possible mechanisms were investigated. Pretreatment with OA prior to the administration of CCl4 significantly suppressed the increases of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (4.2- and 19.9-fold, respectively) in a dose-dependent manner in mice. The dissipation of mitochondrial membrane potential (14.8%) and intra-mitochondrial Ca 2+ overload (2.1-fold) in livers of CCl4-insulted mice were also dose-dependently prevented by pretreatment with 20, 50 or 100 mg/kg OA. In addition, the effects of OA on liver mitochondria permeability transition (MPT) induced by Ca 2+ were assessed by measuring the change in mitochondrial membrane potential, release of matrix Ca 2+ and mitochondrial swelling in vitro. The results showed that preincubation with 50 or 100 μg/ml OA obviously inhibited the Ca 2+-induced mitochondrial swelling, mitochondrial membrane depolarization and intra-mitochondrial Ca 2+ release. It could be concluded that OA has protective effects on liver mitochondria and the mechanisms underlying its protection may be related to its inhibitory action on MPT.


1992 ◽  
Vol 263 (2) ◽  
pp. C405-C411 ◽  
Author(s):  
Y. Park ◽  
T. M. Devlin ◽  
D. P. Jones

The dimer and trimer of 16,16-dimethyl-15-dehydroprostaglandin B1 (16,16-diMePGB1) previously have been shown to have protective effects on mitochondrial function. To examine the potential mechanisms involved in protection against mitochondrial failure, we have studied the effects of the dimer of 16,16-diMe-PGB1 (dicalciphor) on mitochondrial function in hepatocytes exposed to KCN. Addition of micromolar concentrations of dicalciphor provided substantial protection against KCN-induced toxicity in a concentration- and time-dependent manner. Dicalciphor, however, had no effect on total or mitochondrial ATP losses in KCN-treated cells. The dimer prevented the marked loss of mitochondrial membrane potential (delta psi) and delta pH that occurs as a result of KCN treatment and prevented KCN-induced loading of phosphate in mitochondria. Furthermore, the dimer of 16,16-diMePGB1 also prevented KCN-induced mitochondrial and cellular swelling. These results demonstrate that dicalciphor protects against KCN-induced damage and that this protection is associated with regulation of specific mitochondrial ion transport functions.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


2017 ◽  
Author(s):  
Dahong Wang ◽  
Lanlan Wei ◽  
Shuaiying Zhang

The biological activities of quinoxalone, a novel small molecular substance isolated from the broth of the myxobacterium Stigmatella eracta WXNXJ-B, was investigated. This study was designed to determine the anti-proliferative, apoptotic property of quinoxalone, using B16 mouse melanoma cells as a model system. The results showed that quinoxalone has antitumor activity and can significantly inhibit the proliferation of B16 cells. The extent and the timing of apoptosis were strongly dependent on the dose. After treating with quinoxalone and staining with Hoechst 33342, B16 cells showed typical apoptotic morphological features such as chromatin condensation by fluorescent microscopy. DNA isolated from B16 cells cultured with quinoxalone showed a typical DNA ladder of apoptosis in agarose gel electrophoresis. Further investigation results showed that the apoptotic machinery of B16 induced by quinoxalone was associated with drop in mitochondrial membrane potential from 5.35% to 23.7%, up-regulation of Bax and down-regulation of Bcl-2 in a dose-dependent manner. And a significant increased activation of caspase-3. Our finding suggests that quinoxalone could suppress the growth of B16 cells and reduces cell survival via disturbing mitochondrial membrane potential and inducing apoptosis of tumor cells.


2021 ◽  
Author(s):  
Zhuang Ma ◽  
Zuheng Liu ◽  
Yuting Xue ◽  
Hao Zhang ◽  
Wenjun Xiong ◽  
...  

Abstract Background: Both mitochondrial quality control and energy metabolism are critical in maintaining the physiological function of cardiomyocytes. Previous studies indicated that PGC-1α is a transcription co-activator in promoting mitochondrial energy metabolism which would be beneficial for cardiomyocytes. However, PGC-1α overexpression in heart tissues could also result in the development of cardiomyopathy. This discrepancy in vivo and in vitro might be due to neglecting the elimination of damaged mitochondrial. Thus, an integration strategy of mitochondrial biogenesis and mitophagy might be beneficial.Methods: We studied the function of PINK1 in mitophagy in isoproterenol (Iso)-induced cardiomyocyte injury. Adenovirus was used to provoke an overexpression of the PINK1/Mfn2 protein. Mitochondrial morphology was examined via electron microscopy and confocal microscopy. Cardiomyocytes injury were measured by mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and apoptosis. Metformin was used to increase mitochondrial biogenesis, the level of which was detected via immunoblotting. Additionally, mitochondrial respiratory function was measured by ATP production and oxygen consumption rate (OCR). Results: Cardiomyocytes treated with Iso had high levels of PINK1 and low levels of Mfn2 in a time-dependent manner. PINK1 overexpression promoted mitophagy, alleviated Iso-induced reduction in MMP, reduced ROS production and the apoptotic rate. In addition to increasing mitophagy, metformin could promote mitochondrial biogenensis and the overexpression of Mfn2 induce mitochondrial fusion. Moreover, metformin treatment and PINK1/Mfn2 overexpression reduced the mitochondrial dysfunction by inhibiting the generation of ROS, and leading to an increase in both ATP production and mitochondrial membrane potential in Iso-induced cardiomyocytes injury. Conclusion: Our findings indicate that a combination strategy may help ameliorate myocardial injury through mitophagy and mitochondrial biogenesis.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


2016 ◽  
Vol 38 (3) ◽  
pp. 909-925 ◽  
Author(s):  
Xia-Qiu Tian ◽  
Yue-Jin Yang ◽  
Qing Li ◽  
Pei-Sen Huang ◽  
Xiang-Dong Li ◽  
...  

Background/Aims: Poor viability of transplanted mesenchymal stem cells (MSCs) within the ischemic heart limits their therapeutic potential for cardiac repair. Globular adiponectin (gAPN) exerts anti-apoptotic effects on several types of stem cells. Herein, we investigated the effect of gAPN on the MSCs against apoptosis induced by hypoxia and serum deprivation (H/SD). Methods: MSCs exposed to H/SD conditions were treated with different concentrations of gAPN. To identify the main type of receptor, MSCs were transfected with siRNA targeting adiponectin receptor 1 or 2 (AdipoR1 or AdipoR2). To elucidate the downstream pathway, MSCs were pre-incubated with AMPK inhibitor Compound C. Apoptosis, caspase-3 activity and mitochondrial membrane potential were evaluated. Results: H/SD-induced MSCs apoptosis and caspase-3 activation were attenuated by gAPN in a concentration-dependent manner. gAPN increased Bcl-2 and decreased Bax expressions. The loss of mitochondrial membrane potential induced by H/SD was also abolished by gAPN. The protective effect of gAPN was significantly attenuated after the knockdown of AdipoR1 rather than AdipoR2. Moreover, Compound C partly suppressed the anti-apoptotic effect of gAPN. Conclusions: gAPN inhibits H/SD-induced apoptosis in MSCs via AdipoR1-mediated pathway, possibly linked to the activation of AMPK. gAPN may be a novel survival factor for MSCs in the ischemic engraftment environment.


Sign in / Sign up

Export Citation Format

Share Document