scholarly journals Modulation of CD39 and Exogenous APT102 Correct Immune Dysfunction in Experimental Colitis and Crohn’s Disease

2019 ◽  
Vol 14 (6) ◽  
pp. 818-830 ◽  
Author(s):  
René J Robles ◽  
Samiran Mukherjee ◽  
Marta Vuerich ◽  
Anyan Xie ◽  
Rasika Harshe ◽  
...  

Abstract Background and Aims CD39/ENTPD1 scavenges pro-inflammatory nucleotides, to ultimately generate immunosuppressive adenosine, which has a central role in immune homeostasis. Global deletion of Cd39 increases susceptibility to experimental colitis while single nucleotide polymorphisms within the human CD39 promoter, and aberrant patterns of expression during experimental hypoxia, predispose to Crohn’s disease. We aimed to define the impact of transgenic human CD39 [hTG] overexpression in experimental colitis and to model therapeutic effects using the recombinant apyrase APT102 in vivo. We also determined the in vitro effects of APT102 on phenotypic and functional properties of regulatory T-lymphocytes derived from patients with Crohn’s disease. Methods Colitis was induced by administration of dextran sulfate sodium in wild-type [WT] or hTG mice, and, in another model, by adoptive transfer of CD45RBhigh cells with or without WT or hTG regulatory T cells [Treg]. In additional experiments, mice were treated with APT102. The effects of APT102 on phenotype and function of Treg and type-1 regulatory T [Tr1] cells were also evaluated, after purification from peripheral blood and lamina propria of Crohn’s disease patients [n = 38]. Results Overexpression of human CD39 attenuated experimental colitis and protected from the deleterious effects of systemic hypoxia, pharmacologically induced by deferoxamine. Administration of APT102 in vivo enhanced the beneficial effects of endogenous Cd39 boosted by the administration of the aryl hydrocarbon receptor [AhR] ligand unconjugated bilirubin [UCB]. Importantly, supplemental APT102 restored responsiveness to AhR stimulation by UCB in Treg and Tr1 cells, obtained from Crohn’s disease patients. Conclusions hCD39 overexpression ameliorated experimental colitis and prevented hypoxia-related damage in vivo. Exogenous administration of APT102 boosted AhR-mediated regulatory effects in vivo while enhancing Treg functions in Crohn’s disease in vitro.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1429
Author(s):  
Theo Wallimann ◽  
Caroline H. T. Hall ◽  
Sean P. Colgan ◽  
Louise E. Glover

Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Fan Zhao ◽  
Tao Zheng ◽  
Wenbin Gong ◽  
Jie Wu ◽  
Haohao Xie ◽  
...  

AbstractCrohn’s disease (CD) is an intestinal immune-dysfunctional disease. Extracellular vesicles (EVs) are membrane-enclosed particles full of functional molecules, e.g., nuclear acids. Recently, EVs have been shown to participate in the development of CD by realizing intercellular communication among intestinal cells. However, the role of EVs carrying double-strand DNA (dsDNA) shed from sites of intestinal inflammation in CD has not been investigated. Here we isolated EVs from the plasma or colon lavage of murine colitis and CD patients. The level of exosomal dsDNA, including mtDNA and nDNA, significantly increased in murine colitis and active human CD, and was positively correlated with the disease activity. Moreover, the activation of the STING pathway was verified in CD. EVs from the plasma of active human CD triggered STING activation in macrophages in vitro. EVs from LPS-damaged colon epithelial cells were also shown to raise inflammation in macrophages via activating the STING pathway, but the effect disappeared after the removal of exosomal dsDNA. These findings were further confirmed in STING-deficient mice and macrophages. STING deficiency significantly ameliorated colitis. Besides, potential therapeutic effects of GW4869, an inhibitor of EVs release were assessed. The application of GW4869 successfully ameliorated murine colitis by inhibiting STING activation. In conclusion, exosomal dsDNA was found to promote intestinal inflammation via activating the STING pathway in macrophages and act as a potential mechanistic biomarker and therapeutic target of CD.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
Geoffrey M. Forbes

Background: Mesenchymal stromal cells (MSC) are multipotent adult stem cells with immunomodulatory properties. They uniquely express HLA class I antigen at a low level, and do not express HLA class II. Hence, for allogeneic administration, donor to recipient matching is not required; yet a prolonged chimeric state does not occur. Contrary to haematopoietic stem cell transplantation, cytotoxic drug therapy is not required to harvest, or administer, cells. Key Messages: MSC are obtained from marrow, adipose tissue or placenta. In our centre, MSC are isolated from a 10 ml donor marrow aspirate, by virtue of their adherence to plastic. They are expanded in culture, cryopreserved, and subjected to strict quality controls before release for intravenous administration. These activities occur in a dedicated, nationally accredited, laboratory. Initial observations of allogeneic MSC efficacy were in graft-versus-host disease. Both autologous and allogeneic MSC have since been evaluated in biologic refractory luminal and fistulising Crohn's disease (CD). Data from early-phase studies have suggested efficacy for luminal disease when allogeneic MSC were given intravenously and also suggested efficacy for fistulising disease when either allogeneic or autologous MSC were administered into fistulas. MSC treatment is not reported to have caused serious adverse events. Although in vitro criteria for defining MSC exist, a major challenge lies in how to define MSC for clinical use. MSC function in vivo is likely to be dependent upon donor immunological characteristics, and widely varying manufacturing processes between laboratories. MSC dose, frequency of administration, stage of disease, and presence of concomitant immunosuppression also require to be defined. Conclusions: MSC therapy may have future utility in CD, but considerable work is first required to determine appropriate phenotypic and functional characteristics of administered cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhihua Sun ◽  
Peiyi Li ◽  
Xiao Wang ◽  
Shuchang Lai ◽  
Hong Qiu ◽  
...  

As the major cause of female anovulatory infertility, polycystic ovary syndrome (PCOS) affects a great proportion of women at childbearing age. Although glucagon-like peptide 1 receptor agonists (GLP-IRAs) show therapeutic effects for PCOS, its target and underlying mechanism remains elusive. In the present study, we identified that, both in vivo and in vitro, GLP-1 functioned as the regulator of proliferation and antiapoptosis of MGCs of follicle in PCOS mouse ovary. Furthermore, forkhead box protein O1 (FoxO1) plays an important role in the courses. Regarding the importance of granulosa cells (GCs) in oocyte development and function, the results from the current study could provide a more detailed illustration on the already known beneficial effects of GLP-1RAs on PCOS and support the future efforts to develop more efficient GLP-1RAs for PCOS treatment.


2019 ◽  
Vol 10 ◽  
pp. 204062231986480 ◽  
Author(s):  
Hristina Kocic ◽  
Giovanni Damiani ◽  
Bojana Stamenkovic ◽  
Michael Tirant ◽  
Andrija Jovic ◽  
...  

Nutrigenomic DNA reprogramming in different chronic diseases and cancer has been assessed through the stimulation of gene expression and mRNA synthesis versus DNA silencing by CpG DNA modification (methylation); histone modification (acetylation, methylation) and expression of small noncoding RNAs, known as microRNAs (miRNAs). With regard to the specific nutrigenomic effects in psoriasis, the influence of specific diets on inflammatory cell signaling transcriptional factors such as nuclear factor (NF)-κB and Wnt signaling pathways, on disease-related specific cytokine expression, pro/antioxidant balance, keratinocyte proliferation/apoptosis and on proliferation/differentiation ratio have been documented; however, the influence of dietary compounds on the balance between ‘good and bad’ miRNA expression has not been considered. This review aims to summarize knowledge about aberrant microRNAs expression in psoriasis and to emphasize the potential impact of some dietary compounds on endogenous miRNA synthesis in experimental conditions in vivo and in vitro. Among the aberrantly expressed miRNAs in psoriasis, one of the most prominently upregulated seems to be miR-21. The beneficial effects of phenolic compounds (curcumin and resveratrol), vitamin D, methyl donors, and omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) are discussed. Highly expressed miR-155 has been downregulated by flavonoids (through a quercetin-rich diet) and by vitamin D. Quercetin has been effective in modulating miR-146a. On the other hand, downregulated miR-125b expression was restored by vitamin D, Coenzyme Q10 and by microelement selenium. In conclusion, the miRNA profile, together with other ‘omics’, may constitute a multifaceted approach to explore the impact of diet on psoriasis prevention and treatment.


2007 ◽  
Vol 97 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Jennifer Gilman ◽  
Kevin D. Cashman

Marine oil-derived n-3 fatty acids have been shown to stimulate intestinal Ca absorption in animal studies, but the effects of such fatty acids on Ca absorption in human subjects are relatively unknown. In particular, n-3 fatty acids may be of therapeutic value for some Crohn's disease patients who experience Ca malabsorption. Therefore, the aim of the present study was to investigate the effect of 20 : 5n-3 and 22 : 6n-3 on transepithelial Ca transport across monolayers of healthy Caco-2 cells as well as of TNF-α-treated Caco-2 cells (an in vitro model of Crohn's disease). Caco-2 cells were seeded onto permeable filter supports and allowed to differentiate into monolayers, which were treated with 80 μm-20 : 5n-3, 80 μm-22 : 6n-3, or 40 μm-20 : 5n-3+40 μm-22 : 6n-3 for 6 or 8 d, with or without co-treatment with TNF-α (10 ng/ml) (n 11–15 monolayers per treatment). On day 16, transepithelial and transcellular transport of 45Ca and fluorescein transport (a marker of paracellular diffusion) were measured. Treatment of healthy and inflamed Caco-2 cells with 20 : 5n-3, 22 : 6n-3 and both fatty acids combined for 8 d significantly (P < 0·005–0·01) increased total transepithelial Ca transport compared with that in control, effects which were mediated by an enhanced rate of transcellular Ca transport. The effects of n-3 fatty acids on Ca absorption after 6 d were less clear-cut. In conclusion, the present in vitro findings highlight the need to investigate the effect of marine oil-based n-3 fatty acids on Ca absorption in vivo in studies of healthy human subjects as well as of Crohn's disease patients.


2020 ◽  
pp. S555-S571
Author(s):  
Z Paluch ◽  
L Biriczová ◽  
G Pallag ◽  
E Carvalheiro Marques ◽  
N Vargová ◽  
...  

Agrimonia eupatoria L. is an herb of the Rosaceae family, widely used in traditional (folk) medicine for its beneficial effects. Its water extracts (infusions and decoctions) are used in the treatment of airway and urinary system diseases, digestive tract diseases, and chronic wounds. Phytochemical analyses of Agrimonia eupatoria L. identified a variety of bioactive compounds including tannins, flavonoids, phenolic acids, triterpenoids and volatile oils possessing antioxidant, immunomodulatory and antimicrobial activities. The authors review the available literature sources examining and discussing the therapeutic and pharmacological effects of Agrimonia eupatoria L. at the molecular level in vitro and in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heike E. F. Becker ◽  
Casper Jamin ◽  
Liene Bervoets ◽  
Annemarie Boleij ◽  
Pan Xu ◽  
...  

Bacteroides fragilis has previously been linked to Crohn’s disease (CD) exacerbations, but results are inconsistent and underlying mechanisms unknown. This study investigates the epidemiology of B. fragilis and its virulence factors bft (enterotoxin) and ubiquitin among 181 CD patients and the impact on the intestinal epithelial barrier in vitro. The prevalence of B. fragilis was significantly higher in active (n = 69/88, 78.4%) as compared to remissive (n = 58/93, 62.4%, p = 0.018) CD patients. Moreover, B. fragilis was associated with intestinal strictures. Interestingly, the intestinal barrier function, as examined by transepithelial electrical resistance (TEER) measurements of Caco-2 monolayers, increased when exposed to secretomes of bft-positive (bft-1 and bft-2 isotype; increased TEER ∼160%, p &lt; 0.001) but not when exposed to bft-negative strains. Whole metagenome sequencing and metabolomics, respectively, identified nine coding sequences and two metabolites that discriminated TEER-increasing from non-TEER-increasing strains. This study revealed a higher B. fragilis prevalence during exacerbation. Surprisingly, bft-positive secretomes increased epithelial resistance, but we excluded Bft as the likely causative factor.


Sign in / Sign up

Export Citation Format

Share Document