Neuropeptides as novel regulators of human atrial TASK-1 currents

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
F Wiedmann ◽  
J Nietfeld ◽  
M Kraft ◽  
A Ratte ◽  
S Benda ◽  
...  

Abstract Background/Introduction The neurokinin-III receptor (NK3R) was recently shown to regulate action potential duration (APD) in atrial cardiomyocytes by inhibition of a background potassium current. In the human heart, TASK-1 (hK2P3.1) two-pore-domain potassium channels display atrial-specific expression. Because of their phospholipase C (PLC)-dependent regulation, TASK-1 channels are a promising candidate to mediate APD prolongation via the Gq-coupled neurokinin-III receptor. Purpose To investigate whether TASK-1 channels mediate neurokinin-III receptor activation induced APD prolongation and to dissect the underlying molecular mechanisms. Methods Patch clamp measurements were performed in atrial cardiomyocytes isolated from patients with atrial fibrillation. Xenopus laevis oocytes heterologously expressing hTASK-1 and hNK3R were subjected to two-electrode voltage-clamp recordings. Results In Xenopus oocytes heterologously overexpressing hNK3R and hTASK-1 administration of substance P or neurokinin B resulted in TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Pharmacological experiments and mutagenesis studies could show a protein kinase C (PKC)-independent mechanism of TASK-1 current inhibition: upon NK3R activation TASK-1 channels are blocked via Gq-mediated PLC activation, in a DAG-dependent fashion. Finally, effects of senktide on atrial background currents could be reproduced in human atrial cardiomyocytes isolated from patients with atrial fibrillation. Conclusion Neurokinin-III receptor stimulation suppresses background potassium currents in isolated human atrial cardiomyocytes from patients with atrial fibrillation. Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a PLC and DAG dependent fashion, suggesting neuropeptides as novel regulators of human atrial TASK-1 currents. Central Illustration Funding Acknowledgement Type of funding source: None

2001 ◽  
Vol 281 (2) ◽  
pp. C700-C708 ◽  
Author(s):  
Gábor Czirják ◽  
Gábor L. Petheő ◽  
András Spät ◽  
Péter Enyedi

The two-pore-domain K+ channel, TASK-1, was recently shown to be a target of receptor-mediated regulation in neurons and in adrenal glomerulosa cells. Here, we demonstrate that TASK-1 expressed in Xenopus laevis oocytes is inhibited by different Ca2+-mobilizing agonists. Lysophosphatidic acid, via its endogenous receptor, and ANG II and carbachol, via their heterologously expressed ANG II type 1a and M1 muscarinic receptors, respectively, inhibit TASK-1. This effect can be mimicked by guanosine 5′- O-(3-thiotriphosphate), indicating the involvement of GTP-binding protein(s). The phospholipase C inhibitor U-73122 reduced the receptor-mediated inhibition of TASK-1. Downstream signals of phospholipase C action (inositol 1,4,5-trisphosphate, cytoplasmic Ca2+ concentration, and diacylglycerol) do not mediate the inhibition. Unlike the Gq-coupled receptors, stimulation of the Gi-activating M2 muscarinic receptor coexpressed with TASK-1 results in an only minimal decrease of the TASK-1 current. However, additional coexpression of phospholipase C-β2 (which is responsive also to Giβγ-subunits) renders M2 receptor activation effective. This indicates the significance of phospholipase C activity in the receptor-mediated inhibition of TASK-1.


2019 ◽  
Vol 20 (20) ◽  
pp. 5193 ◽  
Author(s):  
Felix Wiedmann ◽  
Daniel Schlund ◽  
Francisco Faustino ◽  
Manuel Kraft ◽  
Antonius Ratte ◽  
...  

Mechanosensitive hTREK-1 two-pore-domain potassium (hK2P2.1) channels give rise to background currents that control cellular excitability. Recently, TREK-1 currents have been linked to the regulation of cardiac rhythm as well as to hypertrophy and fibrosis. Even though the pharmacological and biophysical characteristics of hTREK-1 channels have been widely studied, relatively little is known about their posttranslational modifications. This study aimed to evaluate whether hTREK-1 channels are N-glycosylated and whether glycosylation may affect channel functionality. Following pharmacological inhibition of N-glycosylation, enzymatic digestion or mutagenesis, immunoblots of Xenopus laevis oocytes and HEK-293T cell lysates were used to assess electrophoretic mobility. Two-electrode voltage clamp measurements were employed to study channel function. TREK-1 channel subunits undergo N-glycosylation at asparagine residues 110 and 134. The presence of sugar moieties at these two sites increases channel function. Detection of glycosylation-deficient mutant channels in surface fractions and recordings of macroscopic potassium currents mediated by these subunits demonstrated that nonglycosylated hTREK-1 channel subunits are able to reach the cell surface in general but with seemingly reduced efficiency compared to glycosylated subunits. These findings extend our understanding of the regulation of hTREK-1 currents by posttranslational modifications and provide novel insights into how altered ion channel glycosylation may promote arrhythmogenesis.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
F Wiedmann ◽  
D Schlund ◽  
A Ratte ◽  
H A Katus ◽  
M Kraft ◽  
...  

Abstract Background and purpose Mechanosensitive hTREK-1 (hK2P2.1) two-pore-domain potassium channels give rise to background currents that control resting membrane potential in excitable tissue. Recently TREK-1 currents have been linked to regulation of cardiac rhythm as well as hypertrophy and fibrosis. Even though pharmacological and biophysical characteristics of hTREK-1 channels have been widely studied, less is known about its posttranslational modifications. This study aims to evaluate whether hTREK-1 channels are N-glycosylated and whether glycosylation may affect channel functionality. Experimental approach Following pharmacological inhibition of N glycosylation, enzymatic digestion or mutagenesis, immunoblots of Xenopus laevis oocytes and HEK-233T cell lysates were used to assess electrophoretic mobility. Two-electrode voltage clamp measurements were employed to study channel function. Key results TREK-1 channels subunits undergo N-glycosylation at asparagine residues 110 and 134. The presence of sugar moieties at these two sites increases channel function. Detection of glycosylation-deficient mutant channels in surface fractions and recordings of macroscopic potassium currents mediated by these subunits demonstrate that non-glycosylated hTREK-1 channels subunits are able to reach the cell surface in general, but seemingly with reduced efficiency. Conclusion and implications hTREK-1 are glycoproteins and N glycosylation at positions 110 and 134 is involved in channel surface trafficking. These findings extend our view on regulation of hTREK-1 currents by posttranslational modifications and provide novel insights into how glycosylation deficiency disorders may promote arrhythmogenesis.


2004 ◽  
Vol 286 (3) ◽  
pp. C647-C654 ◽  
Author(s):  
Xiaoyong Bao ◽  
Guillermo A. Altenberg ◽  
Luis Reuss

Phosphorylation of the gap junction protein connexin 43 (Cx43) by protein kinase C (PKC) decreases dye coupling in many cell types. We report an investigation of the regulation by PKC of Cx43 gap junctional hemichannels (GJH) expressed in Xenopus laevis oocytes. The activity of GJH was assessed from the uptake of hydrophilic fluorescent probes. PKC inhibitors increased probe uptake in isolated oocytes expressing recombinant Cx43, indicating that the regulatory effect occurs at the hemichannel level. We identified by mutational analysis the carboxy-terminal (CT) domain sequences involved in this response. We found that 1) Ser368 is responsible for the regulation of Cx43 GJH solute permeability by PKC-mediated phosphorylation, 2) CT domain residues 253-270 and 288-359 are not necessary for the effect of PKC, and 3) the prolinerich CT region is not involved in the effect of phosphorylation by PKC. Our results demonstrate that Ser368 (but not Ser372) is involved in the regulation of Cx43 solute permeability by PKC-mediated phosphorylation, and we conclude that different molecular mechanisms underlie the regulation of Cx43 by intracellular pH and PKC-mediated phosphorylation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6978
Author(s):  
Maria J. Iraburu ◽  
Tommy Garner ◽  
Cristina Montiel-Duarte

The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.


2021 ◽  
pp. 247255522110041
Author(s):  
Raffaella Cinquetti ◽  
Francesca Guia Imperiali ◽  
Salvatore Bozzaro ◽  
Daniele Zanella ◽  
Francesca Vacca ◽  
...  

Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities. Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein. This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48–72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals. The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhouchen Ye ◽  
Jing Yu ◽  
Wuping Yan ◽  
Junfeng Zhang ◽  
Dongmei Yang ◽  
...  

AbstractCamellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.


2020 ◽  
Vol 115 (6) ◽  
Author(s):  
Fleur E. Mason ◽  
Julius Ryan D. Pronto ◽  
Khaled Alhussini ◽  
Christoph Maack ◽  
Niels Voigt

AbstractThe molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation–contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.


Sign in / Sign up

Export Citation Format

Share Document