scholarly journals Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhouchen Ye ◽  
Jing Yu ◽  
Wuping Yan ◽  
Junfeng Zhang ◽  
Dongmei Yang ◽  
...  

AbstractCamellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.

Author(s):  
Yu Yuan ◽  
Simiao Fan ◽  
Lexin Shu ◽  
Wei Huang ◽  
Lijuan Xie ◽  
...  

Abstract Background Heart failure is currently a worldwide systemic disease with high morbidity and mortality and is very common. At present, many studies have shown that heart failure is associated with obesity, hypertension and diabetes, but it is still unable to prevent the disease from progressing. Here, we elucidate the molecular mechanisms of doxorubicin–induced harmful effects on rat cardiac metabolism and function from a new perspective, using metabonomics and Proteomics analysis data. Methods The aim of this study was to use metabonomic and proteomic techniques to systematically elucidate the molecular mechanisms of doxorubicin (DOX)–induced heart failure (HF) in rat. In this study, we aimed to systematically elucidate the molecular action of Dox on rats heart and the reasons for DOX–induced the HF mechanism through the metabonomics tandem mass tag (TMT)–based quantitative proteomics approach. Rats were gavaged with DOX (3 mg/kg) for 6 weeks and the plasma metabonomics, cardiac tissue proteomics, histopathology and related proteins expression levels. Results A total of 278 proteins and 21 metabolites were significantly altered in rats following DOX treatments. The responsive proteins and metabolites were predominantly involved in Fatty acid metabolism, Glycolysis, glycerophospholipid metabolism, TCA cycle, Glutathione metabolism, Myocardial contraction. Conclusions The present study indicates the PTP1B inhibits the expression of HIF-1α by inhibiting the phosphorylation of IRS, leading to disorders of fatty acid metabolism and glycolysis, which together with the decrease of Nrf2, SOD, Cytc and AK4 proteins lead to oxidative stress, suggesting the PTP1B may serve as a potential target in the treatment of heart failure.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Claire Newlon ◽  
Matthew Muldoon ◽  
Susan Sereika ◽  
Dora Kuan

Background: Greater consumption of omega-3 fatty acids has been associated with lower cardiovascular disease risk. Randomized controlled trials indicate direct, albeit small, beneficial effects of omega-3 fatty acids on plasma triglycerides and blood pressure, yet few studies have tested their impact on insulin resistance and the clustered risk factors comprising the metabolic syndrome. Hypothesis: Short-term supplementation with marine omega-3 polyunsaturated fatty acids, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) will improve aggregated cardiometabolic risk (CMR) in healthy middle-aged adults Methods: We conducted a double-blind, placebo-controlled, parallel group clinical trial. Subjects were 30-54 year-old adults free of atherosclerotic disease and diabetes whose intake of EPA and DHA totaled <300 mg/day. Each was randomly assigned to daily fish oil supplements (2g/day containing 1000 mg EPA and 400mg DHA) or matching soybean oil placebo for 18 weeks. Aggregate CMR at baseline and post-intervention was calculated as the standardized sum of standardized distributions of blood pressure, BMI, and fasting serum triglycerides, glucose, and HDL (reverse scored). Missing data due to dropouts (n=17) and outliers (1-6 per variable) were replaced by multivariate imputation. Outcome analyses were conducted with linear regressions of all randomized subjects based on intention-to-treat. Results: Participants were 272 healthy adult (57% (154 out of 272) women; 17% (47 out of 272) minority; mean age 42) Pittsburgh-area residents. At baseline, demographics, health parameters, physical activity and EPA and DHA consumption did not differ significantly between treatment groups. No overall treatment effect was found, whereas gender moderated the effects of treatment on CMR risk (gender, p=.001 and gender*treatment interaction term p=.011). In gender-specific analyses, supplementation lowered CMR risk relative to placebo in men(p=.036, effect size=.629, standard error (SE) =.282) but not women (p=.168, effect size .261, SE=.222). Of the individual CMR variables, only HDL-cholesterol in men revealed a significant improvement (p=.012). In men receiving placebo, HDL-cholesterol fell by 1.1 mg/dl, whereas in those receiving fish oil, HDL rose by 1.7 mg/dl. As has been noted in other samples, compared to women men had greater CMR and lower HDL-cholesterol. Conclusions: Increased intake of n-3 fatty acids over 4 months reduced CMR in healthy, mid-life men but not women. This finding may be due to poorer baseline CMR and HDL characteristic of men, or to gender differences in fatty acid metabolism. Further study of gender differences in cardiometabolic risk and fatty acid metabolism may lead to gender-tailored preventive interventions.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Conghui Zhang ◽  
Maria Bartosova ◽  
Betti Schaefer ◽  
Rebecca Herzog ◽  
Rimante Cerkauskiene ◽  
...  

Abstract Background and Aims Due to the unphysiological composition of PD fluids, chronic peritoneal dialysis (PD) induces progressive peritoneal fibrosis, hypervascularization, and vasculopathy. The evolution of the PD membrane and vasculopathy following kidney transplantation (KTx) is largely unknown. Method Arteriolar and peritoneal tissues were obtained from 107 children with chronic kidney disease (CKD5), 72 children on PD (treated with neutral pH PD fluids, with low glucose degradation product content, GDP) and 21 children, who underwent KTx 4-5 weeks after a median 21 months of PD. Specimen underwent standardized digital quantitative histomorphometry. Molecular mechanisms were studied in omental arterioles microdissected from surrounding fat by multi-omics followed by Gene Set Enrichment Analysis (GSEA); key findings were validated in parietal tissues of independent, matched cohorts by quantitative immunohistochemistry (n=15/group). Results Arteriolar transcriptome and proteome GSEA revealed suppression of leucocyte migration and T-cell activation / secretory pathways regulation, of sprouting angiogenesis biological processes and of epithelial proliferation and cell cycle after KTx as compared to PD. Lipid / fatty acid metabolism, autophagy and ATP synthesis pathways were activated. Transcriptome analysis including KTx, PD and CKD5 specifically attributed regulation of arteriolar lipid and fatty acid metabolism to transplantation and comprised 140 transcripts; their regulation was confirmed on the proteome level. Hub gene fatty acid synthase was identified by protein interaction analysis (string-db.org). 15 arteriolar genes activated by PD were inactivated after KTx and included glucose metabolisms and cytoskeleton related transcripts. 24 transcripts and 10 corresponding proteins induced by PD were still active after KTx and associated with biological processes related to TGF-ß signaling, fibrosis and mineral absorption. In line with arteriolar multi-omics findings, peritoneal hypervascularization induced by chronic PD was reversed after Tx to CKD5 level. CD45 positive tissue infiltrating leucocytes count was reduced by 40% and was independently associated with microvessel density in multivariable analysis including PD vintage, daily GDP exposure and recent KTx. Peritoneal lymphatic vessel density, submesothelial thickness, activated fibroblast, fibrin deposit, macrophage and EMT cell counts remained unchanged after KTx compared to PD. Arteriolar lumen to vessel ratios (a marker of vasculopathy) were similar in both groups. Vessel-homeostasis-related proteins in independent, matched cohorts demonstrated increased caspase-3 abundance in peritoneal arterioles after KTx. Arteriolar VEGF-A, thrombospondin, angiopoietin1/2, and hypoxia-inducible factor-1 (HIF-1a) were unchanged, while submesothelial HIF-1a and angiopoietin1/2 were decreased after Tx, favoring vessel maturation. The abundance of the key driver of fibrosis, TGF-ß-effector pSMAD2/3, was unchanged in the peritoneum and arterioles after Tx. Conclusion Our multi-omics analyses of fat covered omental arterioles, not directly exposed to PD fluids, demonstrate inhibition of PD induced immune response and angiogenesis pathways, of glucose metabolism and cytoskeleton regulation to levels similar as seen in children with CKD5. Arteriolar lipid and fatty acid metabolism is selectively altered after KTx. Reversal of low GDP PD induced hypervascularization and inflammation of the parietal peritoneum after KTx, mirror molecular changes in omental arterioles, while profibrotic activity persists after KTx in omental arterioles and in the parietal peritoneum.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 144 ◽  
Author(s):  
Meraj Khan ◽  
Cecil Pace-Asciak ◽  
Jassim Al-Hassan ◽  
Mohammad Afzal ◽  
Yuan Liu ◽  
...  

Various biomolecules induce neutrophil extracellular trap (NET) formation or NETosis. However, the effect of fatty acids on NETosis has not been clearly established. In this study, we focused on the NETosis-inducing ability of several lipid molecules. We extracted the lipid molecules present in Arabian Gulf catfish (Arius bilineatus, Val) skin gel, which has multiple therapeutic activities. Gas chromatography–mass spectrometry (GC-MS) analysis of the lipid fraction-3 from the gel with NETosis-inducing activity contained fatty acids including a furanoid F-acid (F6; 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid) and common long-chain fatty acids such as palmitic acid (PA; C16:0), palmitoleic acid (PO; C16:1), stearic acid (SA; C18:0), and oleic acid (OA; C18:1). Using pure molecules, we show that all of these fatty acids induce NETosis to different degrees in a dose-dependent fashion. Notably, F6 induces a unique form of NETosis that is rapid and induces reactive oxygen species (ROS) production by both NADPH oxidase (NOX) and mitochondria. F6 also induces citrullination of histone. By contrast, the common fatty acids (PA, PO, SA, and OA) only induce NOX-dependent NETosis. The activation of the kinases such as ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) is important for long-chain fatty acid-induced NETosis, whereas, in F-acid-induced NETosis, Akt is additionally needed. Nevertheless, NETosis induced by all of these compounds requires the final chromatin decondensation step of transcriptional firing. These findings are useful for understanding F-acid- and other fatty acid-induced NETosis and to establish the active ingredients with therapeutic potential for regulating diseases involving NET formation.


Agriculture ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 189 ◽  
Author(s):  
Maria Salvatore ◽  
Selene Giambra ◽  
Daniele Naviglio ◽  
Marina DellaGreca ◽  
Francesco Salvatore ◽  
...  

There is evidence that secondary metabolites are involved in the fungal pathogenicity and virulence of Neofusicoccum spp. Fatty acids may also influence the plant–pathogen interaction but, so far, no information is available on their production by species of Neofusicoccum associated with Botryosphaeria dieback, which is a well-known syndrome of several plants with a complex etiology. In the present paper, the production of fatty acids in liquid medium, by strains of N. vitifusiforme and N. parvum associated with declining Sicilian vine plants, was evaluated. Data, acquired via gas chromatography–mass spectrometry (GC/MS), show the presence of linoleic acid as the most abundant fatty acid produced by both examined strains. In addition, the pathogenicity of N. vitifusiforme was tested on 2-year-old grapevine plants of cv. Inzolia.


Sign in / Sign up

Export Citation Format

Share Document