scholarly journals RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Ogawa ◽  
Kiyomi Abe ◽  
Akio Miyao ◽  
Mikiko Kojima ◽  
Hitoshi Sakakibara ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3713-3713
Author(s):  
Atsushi Sato ◽  
Asumi Yokota ◽  
Yoshihiro Hayashi ◽  
Naoka Kamio ◽  
Satoshi Sagai ◽  
...  

Under stress or regenerative conditions, HSCs rapidly enter into cell cycle and are reprogrammed toward myeloid-biased hematopoiesis to meet the increasing demand of myeloid cells. We have previously shown that the transcription factor C/EBPβ plays critical roles at the level of HSPCs under stress conditions (Nat Immunol 2006, J Immunol 2012, Leukemia 2013 and Blood Adv 2019). However, underlying molecular mechanisms of action remain largely unknown. In this study, we have investigated the detailed function of C/EBPβ in regulation of HSPCs. We first evaluated the impact of C/EBPβ on the cell cycle status of LT-HSCs. To exclude the cell-extrinsic contribution of C/EBPβ, CD45.2+ BM cells from WT or Cebpb-/- mice were transplanted into lethally irradiated CD45.1+ WT mice, and these "BM-replaced" recipients were subjected to the following experiments. At steady state, the cell cycle statuses and the numbers of HSPCs did not significantly differ between the recipients of WT cells and those of Cebpb-/- cells. Immediately after 5-FU treatment, WT LT-HSCs entered the cell cycle, as revealed by the decreased percentage of cells in G0 phase and the increased percentage of cells in S/G2M phase. All these parameters of cell cycle acceleration were observed prior to the nadir of LT-HSCs induced by 5-FU and were significantly attenuated in Cebpb-/- LT-HSCs. Next, we assessed the numbers of LT-HSCs, KSL cells, and KL cells after 5-FU treatment. Following the nadir, the recovery of LT-HSCs preceded that of KSL and KL cells, suggesting the differentiation of LT-HSCs to KSL and KL cells. In the recipients of Cebpb-/- cells, the recovery of KSL and KL cells was delayed significantly. Collectively, cell cycle acceleration and subsequent differentiation of LT-HSCs under stress conditions were impaired in the absence of Cebpb. The Cebpb is a single exon gene, and three isoforms, namely, LAP*, LAP and LIP which lacks N-terminus, are translated from its unique mRNA. Due to their structural difference, they should have distinct functions. Here, we focused on expression and functions of these isoforms in regenerating HSPCs. To monitor expression of these isoforms in small numbers of HSCs, we devised a novel intracellular double staining method for flow cytometric analysis using two distinct anti-C/EBPβ antibodies. An antibody against the C-terminus of C/EBPβ recognized all three isoforms, while an antibody against the N-terminus of C/EBPβ only recognized LAP* and LAP. Thus, simultaneous staining with both antibodies should enable us to distinguish cells that dominantly expressed LIP (C-term+ N-term-) from those that expressed all three isoforms (C-term+ N-term+). Using this method, we monitored the expression patterns of these isoforms in LT-HSCs after 5-FU treatment. LT-HSCs initially became C-term single positive in response to 5-FU and subsequently changed to C- and N-term double positive, suggesting that LIP was upregulated prior to LAP/LAP* under stress conditions. These results suggest that phase-specific upregulation of LIP and LAP/LAP* is strongly associated with phase-specific functions of C/EBPβ in cell cycle activation and differentiation, respectively. Indeed, when EML cells, a mouse HSC line, were retrovirally transduced with LIP, the transduced cells were more proliferative and actively cycling than those transduced with the control vector, whereas proliferation and cell cycle were markedly suppressed in LAP*- and LAP-expressing EML cells. LIP-expressing cells remained undifferentiated, while LAP*- and LAP-expressing cells rapidly differentiated into CD11b+ myeloid cells and eventually stopped proliferating. In summary, our findings clearly suggest that sequential upregulation of C/EBPβ isoforms is critical for the regulation of HSCs under stress conditions. LIP amplifies the "reservoir" of HSPCs by accelerating the proliferation of HSCs during the early phase of regeneration, while LAP*/LAP induce their myeloid differentiation at a later phase. These findings should facilitate our understanding of the pathophysiology of infection, inflammation, and regenerating hematopoiesis in response to myeloablative chemotherapies or hematopoietic stem cell transplantation, all of which increase the hematopoietic demands. Disclosures Hirai: Kyowa Kirin: Research Funding.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carlo De Blasio ◽  
Nagendra Verma ◽  
Marta Moretti ◽  
Samantha Cialfi ◽  
Azzurra Zonfrilli ◽  
...  

AbstractBoth CDKN1A (p21 Waf1/Cip1) and Apoptosis signal-regulating kinase 1 (ASK1) play important roles in tumorigenesis. The role of p21 Waf1/Cip1 in attenuating ASK1-induced apoptosis by various stress conditions is well established. However, how ASK1 and p21 Waf1/Cip1 functionally interact during tumorigenesis is still unclear. To address this aspect, we crossed ASK1 knockout (ASK1KO) mice with p21Waf1/Cip1 knockout (p21KO) mice to compare single and double-mutant mice. We observed that deletion of p21Waf1/Cip1 leads to increased keratinocyte proliferation but also increased cell death. This is mechanistically linked to the ASK1 axis-induced apoptosis, including p38 and PARP. Indeed, deletion of ASK1 does not alter the proliferation but decreases the apoptosis of p21KO keratinocytes. To analyze as this interaction might affect skin carcinogenesis, we investigated the response of ASK1KO and p21KO mice to DMBA/TPA-induced tumorigenesis. Here we show that while endogenous ASK1 is dispensable for skin homeostasis, ASK1KO mice are resistant to DMBA/TPA-induced tumorigenesis. However, we found that epidermis lacking both p21 and ASK1 reacquires increased sensitivity to DMBA/TPA-induced tumorigenesis. We demonstrate that apoptosis and cell-cycle progression in p21KO keratinocytes are uncoupled in the absence of ASK1. These data support the model that a critical event ensuring the balance between cell death, cell-cycle arrest, and successful divisions in keratinocytes during stress conditions is the p21-dependent ASK1 inactivation.


2001 ◽  
Vol 24 (1-4) ◽  
pp. 61-88 ◽  
Author(s):  
Mírian Helene Andrietta ◽  
Núbia Barbosa Eloy ◽  
Adriana Silva Hemerly ◽  
Paulo C.G. Ferreira

Data on cell cycle research in plants indicate that the majority of the fundamental regulators are conserved with other eukaryotes, but the controlling mechanisms imposed on them, and their integration into growth and development is unique to plants. To date, most studies on cell division have been conducted in dicot plants. However, monocot plants have distinct developmental strategies that will affect the regulation of cell division at the meristems. In order to advance our understanding how cell division is integrated with the basic mechanisms controlling cell growth and development in monocots, we took advantage of the sugarcane EST Project (Sucest) to carry an exhaustive data mining to identify components of the cell cycle machinery. Results obtained include the description of distinct classes of cyclin-dependent kinases (CDKs); A, B, D, and H-type cyclins; CDK-interacting proteins, CDK-inhibitory and activating kinases, pRB and E2F transcription factors. Most sugarcane cell cycle genes seem to be member of multigene families. Like in dicot plants, CDKa transcription is not restricted to tissues with elevated meristematic activity, but the vast majority of CDKb-related ESTs are found in regions of high proliferation rates. Expression of CKI genes is far more abundant in regions of less cell division, notably in lateral buds. Shared expression patterns for a group of clusters was unraveled by transcriptional profiling, and we suggest that similar approaches could be used to identify genes that are part of the same regulatory network.


2021 ◽  
Vol 22 (9) ◽  
pp. 4494
Author(s):  
Wioletta Rozpędek-Kamińska ◽  
Grzegorz Galita ◽  
Natalia Siwecka ◽  
Steven L. Carroll ◽  
John Alan Diehl ◽  
...  

Primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma. Emerging evidence suggests that Endoplasmic Reticulum (ER) stress and the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated Unfolded Protein Response (UPR) signaling pathway play a key role in POAG pathogenesis. Thus, the main aim of the study was to evaluate the effectiveness of the PERK inhibitor LDN-0060609 in cellular model of glaucoma using primary human trabecular meshwork (HTM) cells. To evaluate the level of the ER stress marker proteins, Western blotting and TaqMan gene expression assay were used. The cytotoxicity was measured by XTT, LDH assays and Giemsa staining, whereas genotoxicity via comet assay. Changes in cell morphology were assessed by phase-contrast microscopy. Analysis of apoptosis was performed by caspase-3 assay and flow cytometry (FC), whereas cell cycle progression by FC. The results obtained have demonstrated that LDN-0060609 triggered a significant decrease of ER stress marker proteins within HTM cells with induced ER stress conditions. Moreover, LDN-0060609 effectively increased viability, reduced DNA damage, increased proliferation, restored normal morphology, reduced apoptosis and restored normal cell cycle distribution of HTM cells with induced ER stress conditions. Thereby, PERK inhibitors, such as LDN-0060609, may provide an innovative, ground-breaking treatment strategy against POAG.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 776-776
Author(s):  
Daiki Karigane ◽  
Shinichiro Okamoto ◽  
Toshio Suda ◽  
Keiyo Takubo

Abstract Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. However, how stress hematopoiesis, including bone marrow transplantation (BMT), induces metabolic changes in HSCs remains unclear. Here, we report a critical role for the p38MAPK family isoform p38α in initiating HSC proliferation during stress hematopoiesis in mouse. First, we identified p38α as the major p38MAPK isozyme highly expressed in HSCs and we also performed conditional knockout of p38α in mice. This mouse showed no overt difference relative to wild type mouse. However, treatment of p38α-deficient mice with 5-FU exhibited defective recovery of hematopoiesis, and the survival rate were lower in p38α-deficient mice than wild-type mice (42.9%, N=7, p38α-deficient mice, vs 100%, wild-type mice, N=6, p=0.03) and loss of p38α in HSCs showed a defective transplantation capacity in primary and secondary transplantation. To gain further insight into p38MAPK function during hematological stress, we evaluated the time course of p38MAPK activation in stressful contexts by intracellular flow cytometry. We found that p38MAPK was immediately phosphorylated in HSCs after hematological stress and returned to normal in a short period, suggesting that p38α functions rapidly after hematological stresses to activate downstream events. To identify events downstream of p38α after hematological stress, we initially evaluated mechanisms such as homing, apoptosis, and ROS generation immediately after BMT. However, defects seen in p38α-deficient HSCs after hematological stress could not be explained by these mechanisms. Therefore we next focused on cell cycle. In CFSE assay, p38α loss resulted in defective recovery from hematological stress and a delay in initiating cycling of HSCs. In addition, p38α-deficient HSCs showed lower BrdU incorporation in vivo (p=0.045) and EdU incorporation in vitro (p=0.003). Transcriptome analysis of transplanted wild-type or p38α-deficient HSCs suggested that p38α-deficient HSCs showed lower enrichment of genes related to HSC-related markers and proliferation. Taken together, loss of p38α resulted in defective HSC cell cycle progression in stressed settings such as transplantation. Given that altered metabolic activities can change cell cycle status, we asked whether p38α regulation of a particular metabolic pathway could initiate HSC cycling under stress conditions. To do so, we collected p38α-deficient or wild-type LSK cells either at steady state or after BMT and extracted metabolites for metabolome analysis using mass spectrometry. Among metabolites surveyed, we focused on changes in glycine and aspartic acid, which are required for purine biosynthesis. Levels of both increased in p38α-deficient as compared with wild-type LSK cells after BMT. Also, mice transplanted with p38α-deficient compared with wild-type LSK cells showed lower levels of allantoin, a product of purine catabolism. These findings suggest that p38α loss suppresses purine metabolism during stress hematopoiesis. Next, we evaluated mRNAs encoding key enzymes functioning in purine metabolism by qPCR. Expression of both inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), and guanosine monophosphate synthetase (GMPS) was significantly decreased in p38α-deficient HSCs relative to wild-type HSCs on day 1 after BMT. To assess how changes in purine metabolism could affect the HSC response to stress, we treated HSCs with cytokines in the presence or absence of mycophenolic acid (MPA), an IMPDH2 inhibitor. MPA treatment significantly suppressed colony formation capacity of HSCs in a dose-dependent manner. Also, EdU incorporation into HSCs was reduced by MPA dose-dependently. Finally, isolated HSCs were cultured with or without MPA for 3 days and then transplanted into recipients along with competitor cells. PB chimerism was dose-dependently decreased in recipients of MPA-treated cells. These findings suggest that purine metabolism directly maintains proliferation capacity of HSCs in stress conditions. In summary, expression of purine-synthesizing enzymes decreased in p38α-deficient HSCs after transplantation, an activity correlated with defective cell cycle progression in vitro and in vivo. Overall, this is the first report of p38α-regulated changes in purine metabolism associated with HSC stress and cell cycle initiation. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186494 ◽  
Author(s):  
Md Shamsuzzaman ◽  
Ananth Bommakanti ◽  
Aviva Zapinsky ◽  
Nusrat Rahman ◽  
Clarence Pascual ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Maude Strobino ◽  
Joanna M. Wenda ◽  
Florian A. Steiner

AbstractHistone H3.3 is a replication-independent variant of histone H3 with important roles in development, differentiation and fertility. Here we show that loss of H3.3 results in replication defects in Caenorhabditis elegans embryos. To characterize these defects, we adapt methods to determine replication timing, map replication origins, and examine replication fork progression. Our analysis of the spatiotemporal regulation of DNA replication shows that despite the very rapid embryonic cell cycle, the genome is replicated from early and late firing origins and is partitioned into domains of early and late replication. We find that under temperature stress conditions, additional replication origins become activated. Moreover, loss of H3.3 results in impaired replication fork progression around origins, which is particularly evident at stress-activated origins. These replication defects are accompanied by replication checkpoint activation, a prolonged cell cycle, and increased lethality in checkpoint-compromised embryos. Our comprehensive analysis of DNA replication in C. elegans reveals the genomic location of replication origins and the dynamics of their firing, and uncovers a role of H3.3 in the regulation of replication origins under stress conditions.


2017 ◽  
Vol 29 (1) ◽  
pp. 167
Author(s):  
M. Saeed-Zidane ◽  
D. Salilew-Wondim ◽  
L. Linden ◽  
E. Held ◽  
C. Neuhoff ◽  
...  

Exosomes are nano-sized (30–100 nm) extracellular membrane vesicles released through exocytosis process in most cells and biological fluids. They contain a cargo of nucleic acids, proteins, lipids and play a vital role in cell-cell communications. Various cell types have been shown to release exosomes into extracellular space as a response to various environmental stress conditions. However, little is known about the response of granulosa cells to oxidative stress, with regard to release of exosomes that may carry mRNA and protein molecules related to cellular oxidative stress response. Here we aimed to investigate the potential release of stress elements by granulosa cells to culture media through exosomes under oxidative stress conditions. For that, bovine granulosa cells from small follicles were aspirated and cultured in DMEM/F-12 media supplemented with exosome free fetal bovine serum (Exo-FBS) and treated with 5 µM H2O2 for 40 min. Granulosa cells were collected 24 h post-treatment to quantify the expression of antioxidants (Nrf2, Keap1, SOD1, CAT1, PRDX1, HOMOX1, TXN1, and NQO1), cell proliferation (PCNA and CNND2), cell differentiation (CYP11A1 and STAR), apoptosis (Casp3), and antiapoptosis (BCL2L1) genes. Reactive oxygen species accumulation, mitochondrial distribution, cell viability, and cell cycle assays were performed in cultured granulosa cells, and the culture medium was used to isolate exosomes using ultracentrifugation procedure. The identity of exosomes was confirmed by immunoblotting of Alix and CD63 proteins, and the expression level of antioxidant was analysed in mRNA isolated from exosomes. Data from 3 independent biological replicates were statistically analysed using the 2-tailed t-test. Results showed that H2O2 treatment increased mRNA and protein level of antioxidants (Nrf2, PRDX1, and TXN1), as well as cell differentiation and apoptosis-related genes compared to untreated controls. However, granulosa cells treated with H2O2 showed lower expression of cell proliferation marker genes (PCNA and CNND2). Cells treated with H2O2 showed increases in reactive oxygen species level, inadequate mitochondrial distribution, and lower cell viability. Cell cycle assay revealed a reduction in G0/G1 proportion and increase in G2 phase in cells treated with H2O2. Higher levels of antioxidant (Nrf2, CAT1, and TXN1) transcripts were detected in exosomes isolated from media with cells under oxidative stress conditions compared to the controls. Labelling and co-transfection of exosomes from stressed cell culture medium with untreated treated recipient granulosa cells resulted in increased abundance of cellular mRNA and protein of Nrf2 and CAT1 in those cells. In conclusion, granulosa cells exposed to oxidative stress could release exosomes that carry molecules related to oxidative stress response, which can be up taken by recipient cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kristen Schroeder ◽  
Kristina Jonas

The asymmetric life cycle of Caulobacter crescentus has provided a model in which to study how protein quality control (PQC) networks interface with cell cycle and developmental processes, and how the functions of these systems change during exposure to stress. As in most bacteria, the PQC network of Caulobacter contains highly conserved ATP-dependent chaperones and proteases as well as more specialized holdases. During growth in optimal conditions, these systems support a regulated circuit of protein synthesis and degradation that drives cell differentiation and cell cycle progression. When stress conditions threaten the proteome, most components of the Caulobacter proteostasis network are upregulated and switch to survival functions that prevent, revert, and remove protein damage, while simultaneously pausing the cell cycle in order to regain protein homeostasis. The specialized physiology of Caulobacter influences how it copes with proteotoxic stress, such as in the global management of damaged proteins during recovery as well as in cell type-specific stress responses. Our mini-review highlights the discoveries that have been made in how Caulobacter utilizes its PQC network for regulating its life cycle under optimal and proteotoxic stress conditions, and discusses open research questions in this model.


Sign in / Sign up

Export Citation Format

Share Document