scholarly journals A novel non-invasive electrocardiographic imaging technique facilitates the preprocedural diagnostic workup of patients with infrequent ventricular arrhythmias

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
K Lesina ◽  
MG Hoogendijk ◽  
A De Wit ◽  
E Peters ◽  
T Szili- Torok

Abstract Funding Acknowledgements Type of funding sources: None. Background Catheter ablation (CA) fails in considerable numbers of patients with ventricular arrhythmias (VAs). Possible reasons include absence and non-inducibility, multifocal origin and anatomically difficult locations of premature ventricular complexes (PVCs) and ventricular tachycardias (VTs). A novel non-invasive electrocardiographic imaging (ECGI) diagnostic tool may help to determine the best treatment strategy of these patients. Purpose To evaluate outpatient ECGI (VIVO, View Into Ventricular Onset, Catheter Precision, NJ) to tailor treatment of patients with infrequent ventricular arrhythmias referred for CA. Methods Thirteen patients in an outpatient setting with VAs were included in this pilot-study. All patients underwent ECGI mapping using VIVO. It is a novel technique that localize the origin of VAs using a combination of 12-lead ECG and a patient specific 3D anatomical reconstruction of the heart and thorax using cardiac magnetic resonance imaging (MRI) or cardiac computed tomography imaging (CT). The technique is based on virtual simulation of pace-mapping and has a unique feature that the imaging can be performed independently from recording of the arrhythmias. Suitability for ablation was based on the VIVO mapping in this cohort. Results Among the 13 patients enrolled (10 female, 3 male, age 39 ±15 years), a total of  16 PVC/VT morphologies were analyzed using VIVO. Ten of them had a low PVC burden (<8%). Ten patients underwent pre-procedural cardiac MRI and 4 had CT imaging. Seven of the patients had structurally normal hearts, while the remaining 6 had non-ischemic cardiomyopathy. Based on the VIVO mapping findings the patients were divided in two groups. Group A: 7 patients in whom ablation was considered suitable. In this group a VIVO based anatomy CA was attempted in 3 patients for  PVCs. Two out of these were successful. Three patients were offered CA but was declined by patient decision (suboptimal balance between burden, complaints and the offered success rates without procedural hard endpoint). Another patient is offered and is waiting for CA. The other group B: 6 patients in whom VIVO mapping was consistent with an unacceptable chance for treatment success were not offered CA. This included: 4 patients with a multifocal origin and a low burden of PVCs. One patient had different diagnosis (atrial fibrillation) and another had no PVC’s during 12-lead ECG monitoring. Conclusions Non-invasive ECGI pace-map is a unique tool that can identify the origin of infrequent VAs in an outpatient clinical setting in order to screen out patients not feasible for CA. Low burden PVCs maybe attempted to be ablated when the source is clearly associated of certain anatomical structures.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Budanova ◽  
M Chmelevsky ◽  
S Zubarev ◽  
D Potyagaylo ◽  
L Parreira ◽  
...  

Abstract Background Correct preoperative topical diagnostics of atrial and ventricular arrhythmias allows for operation time reduction by facilitating the ablation target localization, especially in case of several ectopic sources. Purpose To implement a non-invasive electrocardiographic imaging (ECGI) technique in CARTO system for aiming at topical diagnostics of focal arrhythmias improving. Methods Twelve patients (m/f – 10/2, age (min–max) – 50,5 (32–71)) with focal arrhythmias underwent ECGI in combination with CT or MR imaging. Two subjects had atrial premature contractions (PAC), while ten patients suffered from ventricular premature contractions (PVC) with indications for ablation. Before the ablation procedure Carto LAT mapping was performed in all patients. Using ECGI epi-/endocardial polygonal models of the heart were created, isopotential and activation maps were calculated, uploaded into the Carto system and merged with the CARTO FAM models (Figure 1). Results For six patients with PVC and two patients with PAC, earliest activation zones (EAZs) anatomical locations obtained by invasive and non-invasive methods were the same (RVOT septum, RVOT lateral-anterior and RV lateral-basal walls, right aortic cusp, LVOT, coronary sinus (CS), CS ostium, RA posterior wall), and arrhythmias ablation was successful. Two patients featured coherent EAZs (RV lateral-basal wall and RVOT septum) but a negative ablation outcome. In one patient, EAZs were situated in different anatomical regions: CARTO showed the PVC EAZ in RV septum, whereas Amycard system identified endocardial surface of lateral-basal RV wall. In this patient, PVC was ablated partially. For another patient with MRI late enhancement area in LV lateral wall the EAZs were in the same LV segment but with mismatch in epi/endocardial surface. Conclusion Non-invasive and invasive activation maps merge can improve localization of ablation targets in focal arrhythmias, potentially increasing effectiveness of the EP procedure and reducing operation time.


EP Europace ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1419-1430
Author(s):  
Ruben Doste ◽  
Rafael Sebastian ◽  
Juan Francisco Gomez ◽  
David Soto-Iglesias ◽  
Alejandro Alcaine ◽  
...  

Abstract Aims A pre-operative non-invasive identification of the site of origin (SOO) of outflow tract ventricular arrhythmias (OTVAs) is important to properly plan radiofrequency ablation procedures. Although some algorithms based on electrocardiograms (ECGs) have been developed to predict left vs. right ventricular origins, their accuracy is still limited, especially in complex anatomies. The aim of this work is to use patient-specific electrophysiological simulations of the heart to predict the SOO in OTVA patients. Methods and results An in silico pace-mapping procedure was designed and used on 11 heart geometries, generating for each case simulated ECGs from 12 clinically plausible SOO. Subsequently, the simulated ECGs were compared with patient ECG data obtained during the clinical tachycardia using the 12-lead correlation coefficient (12-lead ρ). Left ventricle (LV) vs. right ventricle (RV) SOO was estimated by computing the LV/RV ratio for each patient, obtained by dividing the average 12-lead ρ value of the LV- and RV-SOO simulated ECGs, respectively. Simulated ECGs that had virtual sites close to the ablation points that stopped the arrhythmia presented higher correlation coefficients. The LV/RV ratio correctly predicted LV vs. RV SOO in 10/11 cases; 1.07 vs. 0.93 P < 0.05 for 12-lead ρ. Conclusion The obtained results demonstrate the potential of the developed in silico pace-mapping technique to complement standard ECG for the pre-operative planning of complex ventricular arrhythmias.


2021 ◽  
Author(s):  
Max Falkenberg ◽  
James A Coleman ◽  
Sam Dobson ◽  
David J Hickey ◽  
Louie Terrill ◽  
...  

AbstractMicro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. We suggest that with further development, these methods may have future potential for patient-specific risk stratification, taking a longitudinal view of the development of the micro-reentrant substrate.Author summaryAtrial fibrillation (AF) is the most common abnormal heart rhythm, yet, despite extensive research, treatment success rates remain poor. In part, this is because there is an incomplete understanding of the mechanistic origin of AF. In this paper, we investigate one proposed mechanism of AF, the formation of “micro-reentrant circuits”, which can be thought of as a “short circuit”, forming when electrically insulating fibrosis (structural repair tissue) infiltrates the space between heart muscle cells. Previously, such circuits have been found in experimental hearts, but identifying these circuits clinically is difficult. Here, we aim to take a small step towards developing computational methods for identifying where in the atria these circuits are most likely to form, drawing on techniques from network science. Our approach indicates that a number of factors are key to determining where circuits form, most notably the thickness of the heart muscle, and the alignment of muscle fibres.


2018 ◽  
Vol 3 (3) ◽  

Tonsillitis is a frequently encountered pathology in the outpatient setting, usually caused by viruses [1]. When bacterial, the most common causatory microbe is streptococcus group A [1]. Tonsillar and peritonsillar abscess (PTA) on the other hand are never viral, and are usually caused by streptococcus pyogenes, Streptococcus melleri, fusobacterium necrophorum and staphylococci [1,2]. The overall incidence of PTA is suggested to be 37/100,000 patients, with the highest incidence between ages 14-21 at 124/100,000 [3].


Author(s):  
Hiroshi Yokoyama ◽  
Masashi Takata ◽  
Fumi Gomi

Abstract Purpose To compare clinical success rates and reductions in intraocular pressure (IOP) and IOP-lowering medication use following suture trabeculotomy ab interno (S group) or microhook trabeculotomy (μ group). Methods This retrospective review collected data from S (n = 104, 122 eyes) and μ (n = 42, 47 eyes) groups who underwent treatment between June 1, 2016, and October 31, 2019, and had 12-month follow-up data including IOP, glaucoma medications, complications, and additional IOP-lowering procedures. The Kaplan–Meier survival analysis was used to evaluate treatment success rates defined as normal IOP (> 5 to ≤ 18 mm Hg), ≥ 20% reduction of IOP from baseline at two consecutive visits, and no further glaucoma surgery. Results Schlemm’s canal opening was longer in the S group than in the μ group (P < 0.0001). The Kaplan–Meier survival analysis of all eyes showed cumulative clinical success rates in S and µ groups were 71.1% and 61.7% (P = 0.230). The Kaplan–Meier survival analysis of eyes with preoperative IOP ≥ 21 mmHg showed cumulative clinical success rates in S and μ groups were 80.4% and 60.0% (P = 0.0192). There were no significant differences in postoperative IOP at 1, 3, and 6 months (S group, 14.9 ± 5.6, 14.6 ± 4.5, 14.6 ± 3.9 mmHg; μ group, 15.8 ± 5.9, 15.2 ± 4.4, 14.7 ± 3.7 mmHg; P = 0.364, 0.443, 0.823), but postoperative IOP was significantly lower in the S group at 12 months (S group, 14.1 ± 3.1 mmHg; μ group, 15.6 ± 4.1 mmHg; P = 0.0361). There were no significant differences in postoperative numbers of glaucoma medications at 1, 3, 6, and 12 months (S group, 1.8 ± 1.6, 1.8 ± 1.5, 2.0 ± 1.6, 1.8 ± 1.5; μ group, 2.0 ± 1.6, 2.0 ± 1.6, 2.1 ± 1.6, 2.2 ± 1.7; P = 0.699, 0.420, 0.737, 0.198). Conclusion S and µ group eyes achieved IOP reduction, but μ group eyes had lower clinical success rates among patients with high preoperative IOP at 12 months.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 683
Author(s):  
Matilde Lombardero ◽  
Mario López-Lombardero ◽  
Diana Alonso-Peñarando ◽  
María del Mar Yllera

The cat mandible is relatively small, and its manipulation implies the use of fixing methods and different repair techniques according to its small size to keep its biomechanical functionality intact. Attempts to fix dislocations of the temporomandibular joint should be primarily performed by non-invasive techniques (repositioning the bones and immobilisation), although when this is not possible, a surgical method should be used. Regarding mandibular fractures, these are usually concurrent with other traumatic injuries that, if serious, should be treated first. A non-invasive approach should also first be considered to fix mandibular fractures. When this is impractical, internal rigid fixation methods, such as osteosynthesis plates, should be used. However, it should be taken into account that in the cat mandible, dental roots and the mandibular canal structures occupy most of the volume of the mandibular body, a fact that makes it challenging to apply a plate with fixed screw positions without invading dental roots or neurovascular structures. Therefore, we propose a new prosthesis design that will provide acceptable rigid biomechanical stabilisation, but avoid dental root and neurovascular damage, when fixing simple mandibular body fractures. Future trends will include the use of better diagnostic imaging techniques, a patient-specific prosthesis design and the use of more biocompatible materials to minimise the patient’s recovery period and suffering.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Kevin Cheng ◽  
Andrew Lin ◽  
Jeremy Yuvaraj ◽  
Stephen J. Nicholls ◽  
Dennis T.L. Wong

Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.


2016 ◽  
Vol 10 (1) ◽  
pp. 375-381 ◽  
Author(s):  
Moritz Hertel ◽  
Katja Sommer ◽  
Eckehard Kostka ◽  
Sandra Maria Imiolczyk ◽  
Husam Ballout ◽  
...  

The aim of the present study was to investigate the clinical outcomes of two different standardized endodontic irrigation protocols. It was assumed that the additional use of ethylenediaminetetraacetate (EDTA) and passive ultrasonic irrigation (PUI) would result in an increased rate of absence of symptoms and remission based on the periapical index (PAI) compared to passive irrigation using only sodium hypochlorite (NaOCl). Data and radiographs from 199 teeth retrieved from the institutional endodontic database were analyzed retrospectively. In 106 teeth irrigation was performed using only NaOCl (protocol 1). Ninety-three teeth were irrigated using NaOCl and EDTA (protocol 2). Chlorhexidine (CHX) was additionally used in revision treatments in both groups. All irrigants in group 2 were activated by PUI. Mean follow-up periods were: protocol 1 = 9.2 ± 4.4 and protocol 2 = 6.6 ± 2.5 months (p < 0.0001 (chi-square test). The frequencies of the PAImasterpoint and PAIfollow-up scores did not differ significantly between teeth, which received either protocol 1 or 2 (p = 0.555 and 0.138). Statistical analysis revealed no significant association between treatment success (absence of clinical symptoms and PAIfollow-up = I or PAImasterpoint > PAIfollow-up > I) and the applied protocol (success rates: protocol 1 = 72.6% vs. protocol 2 = 82.8%; p = 0.203). Furthermore, the frequency of extractions did not differ significantly between the two protocols (p = 0.102). No association was found between follow-up time and treatment success (p = 0.888). The hypothesis was not confirmed. Even though the obtained success rate was higher after supplementing the irrigation protocol with EDTA and PUI, no significance was recorded. Hence, protocol 2 was not superior to protocol 1 regarding therapy success, at least within the limited follow-up period. It may be cautiously concluded that sufficient mechanical debridement combined with passive NaOCl irrigation results in comparably high success rates compared to EDTA and PUI.


Author(s):  
Abhiram Rao ◽  
Prahlad G. Menon

Mitral regurgitation (MR) is a common consequence of ventricular remodeling in heart failure (HF) patients with systolic dysfunction and is associated with diminished survival rates. Characterization of patient-specific anatomy and function of the regurgitant mitral valve (MV) can enhance surgical decision making in terms of medical device choice and deployment strategy for minimally invasive endovascular approaches for MV repair. As a first step toward pre-operative planning for MV repair, we examine the feasibility of using cardiac magnetic resonance (CMR) images acquired in multiple orientations to resolve leaflet function and timing. In this study, MV motion of a HF patient with ischemic heart disease exhibiting both adverse ventricular remodeling and MR was compared pre-operatively against a normal control from the Sunnybrook cardiac database, starting with manually segmented 2D MV contours from cine CMR images acquired in multiple orientations. We find that MV motion analysis from CMR imaging is feasible and anatomical reconstruction using oriented segmentations from a combination of imaging slices acquired in multiple orientations can help overcome inherent limitations of CMR image data in terms of resolving small anatomical features, owing to finite slice-thicknesses and partial volume effects.


Sign in / Sign up

Export Citation Format

Share Document