Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources

2021 ◽  
Vol 368 (7) ◽  
Author(s):  
Somaieh Sabzali ◽  
Majid Bouzari

ABSTRACT Salmonellosis is an important worldwide food-borne disease. Increasing resistance to Salmonella spp. has been reported in recent years, and now the prevalence of multidrug-resistant Salmonella spp. is a worldwide problem. This necessitates alternative approaches like phage therapy. This study aimed to isolate bacteriophages specific for Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium isolated from different sources (chicken meat, beef and eggshells). The antibiotic resistance profiles of the bacteria were determined by phenotypic and genotypic methods. The prevalence of extended-spectrum β-lactamase genes was examined by polymerase chain reaction. In total, 75% of the isolated Salmonella strains were resistant to tetracycline, whereas 70% of them were resistant to azithromycin. All of the isolates from beef were resistant to nalidixic acid. The most common extended-spectrum β-lactamase genes among the isolates were blaSHV (15%) followed by blaTEM (10%) and blaCTX (5%). Two specific bacteriophages were isolated and characterized. The host range for vB_SparS-ui was Salmonella Paratyphi B, S. enterica serovar Paratyphi A and S. enterica, while that for vB_StyS-sam phage was Salmonella Typhimurium and S. enterica serovar Enteritidis. The characteristics of the isolated phages indicate that they are proper candidates to be used to control some foodstuff contaminations and also phage therapy of infected animals.

2020 ◽  
Vol 11 ◽  
Author(s):  
Anahit M. Sedrakyan ◽  
Zhanna A. Ktsoyan ◽  
Karine A. Arakelova ◽  
Magdalina K. Zakharyan ◽  
Alvard I. Hovhannisyan ◽  
...  

A total of 291 non-duplicate isolates of non-typhoidal Salmonella (NTS) were collected from the fecal samples of patients with salmonellosis in Armenia and Georgia during 1996–2016. The isolates were tested for resistance to antimicrobials, including extended-spectrum β-lactamases (ESBL). The high prevalence of multidrug-resistance (MDR) and ESBL-producer phenotypes was detected among Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) isolates collected from patients in Armenia between 1996 and 2016. A total of 36 MDR NTS isolates were subjected to whole genome sequencing (WGS) to determine the genetic background of antimicrobial resistance (AMR) and mobile genetic elements. All ESBL-producing S. Typhimurium isolates belonged to the same sequence type (ST328). The ESBL-producer phenotype was associated with plasmid-encoded CTX-M-5 production. A range of other plasmids was associated with resistance to other antimicrobials, including the MDR phenotype.


2009 ◽  
Vol 76 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Samantha K. Wall ◽  
Jiayi Zhang ◽  
Marcos H. Rostagno ◽  
Paul D. Ebner

ABSTRACT Contamination of meat products with food-borne pathogens usually results from the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, pigs can become colonized with the organism during transport and lairage from contaminated trailers and holding pens, resulting in increased pathogen shedding just prior to processing. Increased shedding, in turn, amplifies the likelihood of carcass contamination by magnifying the amount of bacteria that enters the processing facility. We conducted a series of experiments to test whether phage therapy could limit Salmonella infections at this crucial period. In a preliminary experiment done with small pigs (3 to 4 weeks old; 30 to 40 lb), administration of an anti-Salmonella phage cocktail at the time of inoculation with Salmonella enterica serovar Typhimurium reduced Salmonella colonization by 99.0 to 99.9% (2- to 3-log reduction) in the tonsils, ileum, and cecum. To test the efficacy of phage therapy in a production-like setting, we inoculated four market-weight pigs (in three replicates) with Salmonella enterica serovar Typhimurium and allowed the challenged pigs to contaminate a holding pen for 48 h. Sixteen naïve pigs were randomly split into two groups which received either the anti-Salmonella phage cocktail or a mock treatment. Both groups of pigs were comingled with the challenged pigs in the contaminated pen. Treatment with the anti-Salmonella phage cocktail significantly reduced cecal Salmonella concentrations (95%; P < 0.05) while also reducing (numerically) ileal Salmonella concentrations (90%; P = 0.06). Additional in vitro studies showed that the phage cocktail was also lytic against several non-Typhimurium serovars.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
You-Wun Wang ◽  
I-Hsiu Huang ◽  
Yu-Chieh Liao ◽  
Hung-Chih Kuo ◽  
...  

ABSTRACT We identified 20 to 22 resistance genes, carried in four incompatibility groups of plasmids, in each of five genetically closely related Salmonella enterica serovar Typhimurium strains recovered from humans, pigs, and chickens. The genes conferred resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim, tetracycline, fluoroquinolones, extended-spectrum cephalosporins and cefoxitin, and azithromycin. This study demonstrates the transmission of multidrug-resistant Salmonella strains among humans and food animals and may be the first identification of mphA in azithromycin-resistant Salmonella strains in Taiwan.


2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2004 ◽  
Vol 70 (7) ◽  
pp. 4030-4034 ◽  
Author(s):  
Jaime Martinez-Urtaza ◽  
Ernesto Liebana ◽  
Lourdes Garcia-Migura ◽  
Pelayo Perez-Piñeiro ◽  
Montserrat Saco

ABSTRACT Twenty-three Salmonella enterica serovar Typhimurium isolates from marine environments were characterized by phage typing, pulsed-field gel electrophoresis (PFGE) analysis, plasmid analysis, and antibiotic resistance, and the distribution of the different types in the coastal waters were subsequently analyzed. Five phage types were identified among the isolates (PT41, PT135, PT99, DT104, and DT193). PT135 isolates were exclusively detected during the winter months from 1998 to 2000, whereas DT104 and PT41 isolates were detected exclusively in the summer months from 2000 to 2002. XbaI PFGE analysis revealed 9 PFGE types, and plasmid profiling identified 8 plasmid types (with 1 to 6 plasmids) among the isolates. Only three isolates presented multidrug resistance to antibiotics. Two DT104 isolates were resistant to 8 and 7 antibiotics (profiles ACCeFNaSSuT and ACeFNeSSuT), whereas a PT193 isolate presented resistance to 6 antibiotics (profile ACFSSu). In addition, four PT41 isolates were resistant to a single antibiotic. The detection of multidrug-resistant phage types DT104 and DT193 in shellfish emphasizes the importance of monitoring the presence of Salmonella in routine surveillance of live bivalve molluscs.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ehssan H. Moglad

One of the global requirements for controlling the occurrence of resistance to antimicrobial drugs is to understanding the resistivity profile of various clinical isolates. Therefore, this study aimed to deliver the indication of different resistant profiles of clinically isolated Enterobacteriaceae from different sources of samples from Khartoum state, Sudan, and to determine the prevalence rate of extended-spectrum beta-lactamase (ESBL), multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria. A total of 144 Gram-negative bacteria were collected from different sources (vaginal swab, urine, catheter tip, sputum, blood, tracheal aspirate, pus, stool, pleural fluid, and throat swab). Samples were subcultured and identified according to their cultural characteristics and biochemical tests. Antimicrobial susceptibility test was performed for twenty-four antibiotics from eleven categories against all isolated Enterobacteriaceae according to the recommendation of Clinical and Laboratory Standards Institute (CLSI). The result showed that out of 144 isolates, Escherichia coli and Klebsiella pneumoniae were predominant isolates with the percentage of 47.9 and 25%, respectively. The prevalence of ESBL was higher in K. pneumonia (38.9%) than E. coli (34.8%). All isolated E. coli were sensitive to nitrofurantoin and tigecycline. There was a high prevalence of MDR Enterobacteriaceae, and only one isolate was XDR, while PDR was zero for all isolated bacteria. Active antimicrobial-resistant (AMR) observation through constant data sharing and management of all stakeholders is crucial to recognize and control the AMR global burden. Also, effective antibiotic stewardship procedures would be applied to limit the unreasonable expenditure of antibiotics in Sudan.


Sign in / Sign up

Export Citation Format

Share Document