Take my breath away: studying pathogen invasion of the human lung using primary tissue models

2021 ◽  
Vol 79 (4) ◽  
Author(s):  
Amanda L. Dragan ◽  
Daniel E. Voth

ABSTRACT The human pulmonary environment is complex, containing a matrix of cells, including fibroblasts, epithelial cells, interstitial macrophages, alveolar macrophages and neutrophils. When confronted with foreign material or invading pathogens, these cells mount a robust response. Nevertheless, many bacterial pathogens with an intracellular lifecycle stage exploit this environment for replication and survival. These include, but are not limited to, Coxiella burnetii, Legionella pneumophila, Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Currently, few human disease-relevant model systems exist for studying host–pathogen interactions during these bacterial infections in the lung. Here, we present two novel infection platforms, human alveolar macrophages (hAMs) and human precision-cut lung slices (hPCLS), along with an up-to-date synopsis of research using said models. Additionally, alternative uses for these systems in the absence of pathogen involvement are presented, such as tissue banking and further characterization of the human lung environment. Overall, hAMs and hPCLS allow novel human disease-relevant investigations that other models, such as cell lines and animal models, cannot completely provide.

Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
B Schmeck ◽  
B Dolniak ◽  
I Pollock ◽  
C Schulz ◽  
W Bertrams ◽  
...  

Author(s):  
◽  
Eptisam lambu

Pulmonary arterial hypertension (PAH) is a rare multifactorial disease characterized by abnormal high blood pressure in the pulmonary artery, or increased pulmonary vascular resistance (PVR), caused by obstruction in the small arteries of the lung. Increased PVR is also thought to be caused by abnormal vascular remodeling, due to thickening of the pulmonary vascular wall resulting from significant hypertrophy of pulmonary arterial smooth-muscle cells (PASMCs) and increased proliferation/impaired apoptosis of pulmonary arterial endothelial cells (PAECs). Herein, we investigated the mechanisms and explored molecular pathways mediating the lung pathogenesis in two PAH rat models: Monocrotaline (MCT) and Sugen5416/Hypoxia (SuHx). We analyzed these disease models to determine where the vasculature shows the most severe PAH pathology and which model best recapitulates the human disease. We investigated the role vascular remodeling, hypoxia, cell proliferation, apoptosis, DNA damage and inflammation play in the pathogenesis of PAH. Neither model recapitulated all features of the human disease, however each model presented with some of the pathology seen in PAH patients.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Oluchi Aroh ◽  
Kenneth M. Halanych

Abstract Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments.


Biopolymers ◽  
2012 ◽  
Vol 98 (4) ◽  
pp. 338-344 ◽  
Author(s):  
Marco M. Domingues ◽  
Rita G. Inácio ◽  
José M. Raimundo ◽  
Miguel Martins ◽  
Miguel A. R. B. Castanho ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
pp. 456
Author(s):  
Simone Rentschler ◽  
Lars Kaiser ◽  
Hans-Peter Deigner

Precise and rapid identification and characterization of pathogens and antimicrobial resistance patterns are critical for the adequate treatment of infections, which represent an increasing problem in intensive care medicine. The current situation remains far from satisfactory in terms of turnaround times and overall efficacy. Application of an ineffective antimicrobial agent or the unnecessary use of broad-spectrum antibiotics worsens the patient prognosis and further accelerates the generation of resistant mutants. Here, we provide an overview that includes an evaluation and comparison of existing tools used to diagnose bacterial infections, together with a consideration of the underlying molecular principles and technologies. Special emphasis is placed on emerging developments that may lead to significant improvements in point of care detection and diagnosis of multi-resistant pathogens, and new directions that may be used to guide antibiotic therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stevan D. Stojanović ◽  
Maximilian Fuchs ◽  
Chunguang Liang ◽  
Kevin Schmidt ◽  
Ke Xiao ◽  
...  

AbstractThe family of RNA-binding proteins (RBP) functions as a crucial regulator of multiple biological processes and diseases. However, RBP function in the clinical setting of idiopathic pulmonary fibrosis (IPF) is still unknown. We developed a practical in silico screening approach for the characterization of RBPs using multi-sources data information and comparative molecular network bioinformatics followed by wet-lab validation studies. Data mining of bulk RNA-Sequencing data of tissues of patients with IPF identified Quaking (QKI) as a significant downregulated RBP. Cell-type specific expression was confirmed by single-cell RNA-Sequencing analysis of IPF patient data. We systematically analyzed the molecular interaction network around QKI and its functional interplay with microRNAs (miRs) in human lung fibroblasts and discovered a novel regulatory miR-506-QKI axis contributing to the pathogenesis of IPF. The in silico results were validated by in-house experiments applying model systems of miR and lung biology. This study supports an understanding of the intrinsic molecular mechanisms of IPF regulated by the miR-506-QKI axis. Initially applied to human lung disease, the herein presented integrative in silico data mining approach can be adapted to other disease entities, underlining its practical relevance in RBP research.


Sign in / Sign up

Export Citation Format

Share Document