scholarly journals Molecular evolution of the Ac/Ds transposable-element family in pearl millet and other grasses.

Genetics ◽  
1995 ◽  
Vol 139 (3) ◽  
pp. 1411-1419
Author(s):  
G A Huttley ◽  
A F MacRae ◽  
M T Clegg

Abstract We report an Ac-like sequence from pearl millet (Pennisetum glaucum) and deletion derivative Ac-like sequences from pearl millet and another grass species, Bambusa multiplex. Sequence relationships between the pearl millet and maize Ac elements suggest that Ac/Ds transposable-element family is ancient. Further, the sequence identity between the Bambusa Ac-like sequence and maize Ac implies that the Ac/Ds transposable-element family has been in the grass family since its inception. The Ac-like sequences reported from pearl millet and maize Ac are statistically heterogeneous in pair-wise distance comparisons to each other. Yet, we are unable to discriminate between differential selection or ectopic exchange (recombination and conversion) between nonidentical transposable element homologues, as the cause of the heterogeneity. However, the more extreme heterogeneity exhibited between the previously described pearl millet element and maize Ac seems likely to derive from ectopic exchange between elements with different levels of divergence.

2020 ◽  
Vol 68 ◽  
pp. 29-64
Author(s):  
N.S. Probatova ◽  

The paper summarizes information on chromosome numbers (CNs) of the Grass species (Poaceae) in the flora of Russian Federation, obtained on the original material, most part - from the Russian Far East (RFE). In some species the CNs are known in Russia or in the world only from RFE, in some – from one locality or few, or from one subregion of RFE. The grass species in RFE often occur in mountain regions and near seacoasts; some species are endemics, some were studied near the limits of their geographical distribution areas. The diversity of CNs, the special features of the CNs distribution in some grass groups are discussed. The alien species are abundant in RFE, and their CNs are also involved in the study. For karyologically polymorphous species further studies are needed.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Sign in / Sign up

Export Citation Format

Share Document