scholarly journals Genetic and physical interactions between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation.

Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Y W Jiang ◽  
P R Dohrmann ◽  
D J Stillman

Abstract The SIN4 and RGR1 genes of Saccharomyces cerevisiae were identified by mutations in quite different genetic screens. We have shown that the SIN4 gene product is required for proper transcriptional regulation of many genes and that a sin4 mutation can affect either activation or repression of specific genes. We have suggested that this dual nature of SIN4 in transcriptional regulation is due to its involvement in chromatin organization. We now report that the role of RGR1 in gene regulation is similar to that of SIN4. SIN4 and RGR1 both function as negative transcriptional regulators of HO and IME1, and mutations in either gene lead to decreased expression of other genes including CTS1. Strains with sin4 or rgr1 mutations both have phenotypes similar to those caused by histone mutations, including suppression of delta insertion into promoters (Spt- phenotype), activation of promoters lacking UAS elements, and decreased superhelical density of plasmid DNA molecules. Overexpression of RGR1 suppresses the temperature sensitivity due to a sin4 mutation. Finally, we use yeast strains expressing GST fusion proteins to demonstrate that the Sin4p and Rgr1p proteins are physically associated in vivo. These results indicate that Sin4p and Rgr1p act together in vivo to organize chromatin structure and thus regulate transcription.

1999 ◽  
Vol 55 (6) ◽  
pp. 2338-2348 ◽  
Author(s):  
Noritaka Kawada ◽  
Toshiki Moriyama ◽  
Akio Ando ◽  
Tohru Koyama ◽  
Masatsugu Hori ◽  
...  

Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210124
Author(s):  
Ankita Saha ◽  
Yamini Dalal

Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo , combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.


1999 ◽  
Vol 19 (10) ◽  
pp. 6543-6553 ◽  
Author(s):  
Puri Fortes ◽  
Joanna Kufel ◽  
Maarten Fornerod ◽  
Maria Polycarpou-Schwarz ◽  
Denis Lafontaine ◽  
...  

ABSTRACT Yeast strains lacking the yeast nuclear cap-binding complex (yCBC) are viable, although impaired in growth. We have taken advantage of this observation to carry out a genetic screen for components that show synthetic lethality (SL) with a cbp20-Δcbp80-Δ double mutation. One set of SL interactions was due to mutations that were complemented by components of U1 small nuclear RNP (snRNP) and the yeast splicing commitment complex. These interactions confirm the role of yCBC in commitment complex formation. Physical interaction of yCBC with the commitment complex components Mud10p and Mud2p, which may directly mediate yCBC function, was demonstrated. Unexpectedly, we identified multiple SL mutations that were complemented by Cbf5p and Nop58p. These are components of the two major classes of yeast small nucleolar RNPs, which function in the maturation of rRNA precursors. Mutants lacking yCBC were found to be defective in rRNA processing. Analysis of the yCBC deletion phenotype suggests that this is likely to be due to a defect in the splicing of a subset of ribosomal protein mRNA precursors.


2000 ◽  
Vol 44 (2) ◽  
pp. 418-420 ◽  
Author(s):  
Dana Michalkova-Papajova ◽  
Margita Obernauerova ◽  
Julius Subik

ABSTRACT Yeast strains disrupted in the PDR1, PDR3, or PDR5 gene, but not in SNQ2, exhibited higher sensitivity to mucidin (strobilurin A) than did the isogenic wild-type strains. Different gain-of-function mutations in the PDR1and PDR3 genes rendered yeast mutants resistant to this antibiotic. Mucidin induced PDR5 expression, but the changes in the expression of SNQ2 were only barely detectable. The results indicate that PDR5 provides the link between transcriptional regulation by PDR1 andPDR3 and mucidin resistance of yeast.


2000 ◽  
Vol 20 (11) ◽  
pp. 3764-3771 ◽  
Author(s):  
Silvia Misiti ◽  
Simona Nanni ◽  
Giulia Fontemaggi ◽  
Yu-Sheng Cong ◽  
Jianping Wen ◽  
...  

ABSTRACT In mammals, molecular mechanisms and factors involved in the tight regulation of telomerase expression and activity are still largely undefined. In this study, we provide evidence for a role of estrogens and their receptors in the transcriptional regulation of hTERT, the catalytic subunit of human telomerase and, consequently, in the activation of the enzyme. Through a computer analysis of the hTERT 5′-flanking sequences, we identified a putative estrogen response element (ERE) which was capable of binding in vitro human estrogen receptor α (ERα). In vivo DNA footprinting revealed specific modifications of the ERE region in ERα-positive but not ERα-negative cells upon treatment with 17β-estradiol (E2), indicative of estrogen-dependent chromatin remodelling. In the presence of E2, transient expression of ERα but not ERβ remarkably increased hTERT promoter activity, and mutation of the ERE significantly reduced this effect. No telomerase activity was detected in human ovary epithelial cells grown in the absence of E2, but the addition of the hormone induced the enzyme within 3 h of treatment. The expression of hTERT mRNA and protein was induced in parallel with enzymatic activity. This prompt estrogen modulation of telomerase activity substantiates estrogen-dependent transcriptional regulation of the hTERT gene. The identification of hTERT as a target of estrogens represents a novel finding which advances the understanding of telomerase regulation in hormone-dependent cells and has implications for a potential role of hormones in their senescence and malignant conversion.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document